Advertisement

Applied Physics A

, 125:655 | Cite as

Designing on scaled absorbing materials at THz band using Ni@mica composite

  • Feiming Wei
  • Yonggang XuEmail author
  • Wei Gao
  • Dianliang Zheng
  • Ting Liu
Article
  • 47 Downloads

Abstract

The scaled measurement on the target model coated with the frequency dispersion absorber with a large-scaled factor was still an unsolved problem. In this work, the scaled absorbing material with the scale factor 100 was designed at Terahertz (THz) band using the hybrid Ni@mica particle. The designing method on the scaled absorber was composed with the particle distribution designing, permittivity interpolation method, and multilayer structure optimization. The complex permittivity and permeability were measured first on the THz time-domain spectroscopy (TDS) measurement system in frequency 0.8–1.8 THz as the Ni@mica particle-filling ratio of the absorber was 30%, and then, the reflection loss could be calculated. As the different holes were set in the absorbing squared body element, the transmission ratio and the reflection ratio of the absorbing composite were simulated in the computer simulation technology (CST) software, and the effective permittivity and permeability could be calculated. Then, the permittivity data base with different holes was built by the Lagrange interpolation method. Finally, the scaled absorber materials could be optimized for the magnetic coating plate at 1 THz and 0.8 THz, and the designed scaled absorber included two layers: the bottom layer thickness was 0.12 mm with volume content 30% and the upper layer thickness was 0.17 mm with volume content 27%. The calculation result showed that the radar cross section (RCS) deviation between the two similar models was − 40.02dB@8GHz and − 40.21dB@10GHz, which were very close to the theoretical value − 40 dB. It indicated that the Ni@mica was one of the effective candidates to construct the scaled absorbing material.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61601299, 51706145), Hunan Natural Science Foundation (No. 2018JJ3591), the Science and Technology Commission of Shanghai Municipality (Grant No. 19ZR1453600), and the Science Foundation of Jilin Institute of Chemical Technology (Grant No. 2018026).

References

  1. 1.
    G. Sinclair, Theory of model of electromagnetic systems. Proc. IRE. 36(11), 1364–1370 (1948)CrossRefGoogle Scholar
  2. 2.
    M. Coulombe et al., Submillimeter-wave polarimetric compact ranges for scale-model radar measurements. IEEE MTT-S Dig. Int. Microw. Symp. 3, 1583–1586 (2002)Google Scholar
  3. 3.
    A. Lonnqvist, J. Mallat, A.V. Raisanen, Phase-hologram-based compact RCS test range at 310 GHz for scale models. IEEE Trans. Microw. Theory Tech. 54(6), 2391–2397 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Agung Susetio, Takashi Oki, Hisashi Morishita., Monostatic radar cross section evaluations of scale model single layer dielectric radar absorbing material at S and X bands, In: IEEE APCAP., p. 568–569, 2015Google Scholar
  5. 5.
    Christopher J. Beaudon, Development of a 1/35scale VHF-UHF far-field RCS imaging system used to investigate scattering (University of Massachusetts Lowell, Massachusetts, 2001)Google Scholar
  6. 6.
    Gatesman A J, Goyette T M, Dickinson J C., Polarimetric backscattering behavior of ground clutter at X, Ka, and W-band, in Proc. Algorithms for Synthetic Aperture Radar Imagery XII,., p.428–439, 2005Google Scholar
  7. 7.
    A. J. Gatesman, T. M. Goyette, J. C. Dickinson, Physical scale modeling the millimeter-wave backscattering behavior of ground clutter, in Proc. SPIE. p. 141–151, 2001Google Scholar
  8. 8.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V.G. Kostishyn, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, Structure and magnetic properties of BaFe11.9In0.1O19 hexaferrite in a wide temperature range. J Alloys Compd. 689, 383–393 (2016)CrossRefGoogle Scholar
  9. 9.
    V.A. Turchenko, S.V. Trukhanov, A.M. Balagurov, V.G. Kostishyn, A.V. Trukhanov, L.V. Panina, E.L. Trukhanova, Features of crystal structure and dual ferroic properties of BaFe12-xMexO19 (Me = In3+ and Ga3+; x = 0.1–1.2). J. Magn. Magn. Mater. 464, 139–147 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Chen, A. Zhang, L. Ding, Y. Liu, H. Lu, A three-dimensional absorber hybrid with polar oxygen functional groups of mwnts/graphene with enhanced microwave absorbing properties. Compos. Part. B. Eng. 108, 386–392 (2017)CrossRefGoogle Scholar
  11. 11.
    J. Li, Y. Xie, W. Lu, T.W. Chou, Flexible electromagnetic wave absorbing composite based on 3D Rgo-CNT-Fe3O4 ternary films. Carbon 129, 76–84 (2018)CrossRefGoogle Scholar
  12. 12.
    A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.A. Turchenko, M. Salem, Evolution of structure and physical properties in Al-substituted Ba-hexaferrites. Chin. Phys. B 25, 016102–16106 (2016)CrossRefGoogle Scholar
  13. 13.
    A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, S.H. Jabarov, V.V. Korovushkin, S.V. Trukhanov, E.L. Trukhanova, Magnetic properties and Mössbauer study of gallium doped M-type barium hexaferrites. Ceram. Int. 43, 12822–12827 (2017)CrossRefGoogle Scholar
  14. 14.
    M.J. Coulombe, T. Horgan, J. Waldman et al., A 524 GHz polarimetric compact range for scale model RCS measurements (Univ Lowell Submillimeter-Wave Tech Lab, Massachusetts, 1999)Google Scholar
  15. 15.
    G.B. Demartinis, M.J. Coulombe, T.M. Horgan et al., A 240 GHZ polarimetric compact range for scale model RCS measurements [R] (Univ Lowell Submillimeter-Wave Tech Lab, Massachusetts, 2010)Google Scholar
  16. 16.
    Y. Zhao, M. Zhang, H. Chen. The EM scattering of electrically large dielectric rough sea surface at 240 GHz using a scale model. IEEE Trans. Antennas Propag, 60(12), 5890–5899. ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    X. Yonggang, L. Yuan, W. Gao, X. Wang, Z. Liang, Y. Liao, Wide band design on the scaled absorbing material flled with flaky CIPs. J. Phys. D: Appl. Phys. 51, 065004 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    X.X. Li, H. Zhao, C. Liu, J. Cai, Y. Zhang, Y. Jiang, D. Zhang, High-efficiency alignment of 3D biotemplated helices via rotating magnetic field for terahertz chiral metamaterials. Adv. Opt. Mater. 7, 1900247 (2019)CrossRefGoogle Scholar
  19. 19.
    K. Kamata, Z. Piao, S. Suzuki, T. Fujimori, W. Tajiri, K. Nagai, S. Horaguchi, Spirulina-templated metal microcoils with controlled helical structures for THz electromagnetic responses. Sci. Rep. 4, 4919 (2014)CrossRefGoogle Scholar
  20. 20.
    E. De Tommasi, I. Rea, V. Mocella, L. Moretti, M. De Stefano, I. Rendina, L. De Stefano, Multi-wavelength study of light transmitted through a single marine centric diatom. Opt Express 18(12), 12203–12212 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Fang, V.W. Chen, Y. Cai, J.D. Berrigan, S.R. Marder, J.W. Perry, K.H. Sandhage, Biologically enabled syntheses of freestanding metallic structures possessing subwavelength pore arrays for extraordinary (surface plasmon-mediated) infrared transmission. Adv Func Mater 22(12), 2550–2559 (2012)CrossRefGoogle Scholar
  22. 22.
    D.R. Smith, S. Schultz, P. Markos, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev B 65, 195104 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    K.C. Pitman, M.W. Lindley, D. Simkin, J.F. Cooper, Radar absorbers: better by design. IEEE Proc. F Radar Signal Process. 138(3), 223–228 (1991)CrossRefGoogle Scholar
  24. 24.
    O.S. Yakovenko, LYu. Matzui, L.L. Vovchenko, A.V. Trukhanov, I.S. Kazakevich, S.V. Trukhanov, Y.I. Prylutskyy, U. Ritter, Magnetic anisotropy of the graphite nanoplatelet-epoxy and MWCNT-epoxy composites with aligned barium ferrite filler. J. Mat. Sci. 52, 5345–5358 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    O.S. Yakovenko, LYu. Matzui, L.L. Vovchenko, O.V. Lozitsky, O.I. Prokopov, O.A. Lazarenko, A.V. Zhuravkov, V.V. Oliynyk, V.L. Launets, S.V. Trukhanov, A.V. Trukhanov, Electrophysical properties of epoxy-based composites with graphite nanoplatelets and magnetically aligned magnetite. Mol Cryst Liq Cryst 661, 68–80 (2018)CrossRefGoogle Scholar
  26. 26.
    S.V. Trukhanov, A.V. Trukhanov, M.M. Salem, E.L. Trukhanova, L.V. Panina, V.G. Kostishyn, M.A. Darwish, An.V. Trukhanov, T.I. Zubar, D.I. Tishkevich, V. Sivakov, D.A. Vinnik, S.A. Gudkova (2018) Charanjeet Singh, preparation and investigation of structure, magnetic and dielectric properties of (BaFe11.9Al0.1O19)1–x—(BaTiO3)x bicomponent ceramics, Ceram. Int. 44:21295–21302. CrossRefGoogle Scholar
  27. 27.
    M.M. Salem, L.V. Panina, E.L. Trukhanova, M.A. Darwish, A.T. Morchenko, T.I. Zubar, S.V. Trukhanov, A.V. Trukhanov, Structural, electric and magnetic properties of (BaFe11.9Al0.1O19)1–x—(BaTiO3)x composites. Compos. B Eng. 174, 107054–107058 (2019)CrossRefGoogle Scholar
  28. 28.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V. An, D.I. Trukhanov, E.L. Tishkevich, T.I. Trukhanova, D.V. Zubar, V.G. Karpinsky, L.V. Kostishyn, D.A. Panina, S.A. Vinnik, E.A. Gudkova, P. Trofimov, A. Thakur, Y.Yang Thakur, Magnetic and dipole moments in indium doped barium hexaferrites. J. Magn. Magn. Mater. 457, 83–96 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    S.V. Trukhanov, A.V. Trukhanov, L.V. Panina, V.G. Kostishyn, V.A. Turchenko, E.L. Trukhanova, V. An, T.I. Trukhanov, V.M. Zubar, D.I. Ivanov, D.A. Tishkevich, S.A. Vinnik, D.S. Gudkova, M.G. Klygach, P. Vakhitov, A. Thakur, Y.Yang Thakur, Temperature evolution of the structure parameters and exchange interactions in BaFe12-xInxO19. J. Magn. Magn. Mater. 466, 393–405 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    T. Liu, L. Zhou, D. Zheng et al., Electromagnetic property of the Ni@mica sheet fabricated by chemical vapor decomposition method. Appl Phys A 125(6), 422 (2019)ADSCrossRefGoogle Scholar
  31. 31.
    A.L. De Paula, J.J. Barroso, M.C. Rezende, Modified Nicolson–Ross–Weir (NRW) method to retrieve the constitutive parameters of low-loss materials, in SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011) (IEEE, Natal, Brazil, 2011), pp. 488–492Google Scholar
  32. 32.
    O. Spathmann, M. Saviz, J. Streckert, M. Zang, V. Hansen, M. Clemens, Numerical verification of the applicability of the effective medium theory with respect to dielectric properties of biological tissue. IEEE Trans Magn 51(3), 1–4 (2015)CrossRefGoogle Scholar
  33. 33.
    A. Pourkazemi, W. Ranson, J. Stiens, M. Becquaert, M. Vandewal, Novel illumination and parameter extraction technique for the characterization of multilayer structures in the GHz range with deep sub-wavelength resolution, in IEEE 15th Mediterranean Microwave Symposium (MMS) (2015), pp. 1–4Google Scholar
  34. 34.
    L.M. Yuan, Y.G. Xu, W. Gao et al., Design of scale model of plate-shaped absorber in a wide frequency range. Chin Phys B 27(4), 044101 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    D. Zheng, T. Liu, L. Liu, Y.G. Xu, Design on the wide band absorber with low density based on the particle distribution. J. Magn. Magn. Mater. 451, 11–19 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    Y.G. Xu, L.M. Yuan, X.B. Wang, D.Y. Zhang, Two-step milling on the carbonyl iron particles and optimizing on the composite absorption. J. Alloys. Compd. 676, 251–259 (2016)CrossRefGoogle Scholar
  37. 37.
    B. Najafi et al., Application of ANNs, ANFIS and RSM to estimating and optimizing the parameters that affect the yield and cost of biodiesel production. Eng. Appl. Comput. Fluid Mech. 12(1), 611–624 (2018)Google Scholar
  38. 38.
    C.T. Cheng et al., Three-person multi-objective conflict decision in reservoir flood control. Eur J Oper Res 142(3), 625–631 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    F. Fotovatikhah et al., Survey of computational intelligence as basis to big flood management: challenges, research directions and future work. Eng. Appl. Comput. Fluid Mech. 12(1), 411–437 (2018)Google Scholar
  40. 40.
    C.L. Wu et al., Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis. J Hydrol 399(3–4), 394–409 (2011)CrossRefGoogle Scholar
  41. 41.
    R. Moazenzadeh et al., Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran. Eng. Appl. Comput. Fluid Mech. 12(1), 584–597 (2018)Google Scholar
  42. 42.
    Z.M. Yaseen et al., An enhanced extreme learning machine model for river flow forecasting: state-of-the-art, practical applications in water resource engineering area and future research direction. J Hydrol 569, 387–408 (2019)CrossRefGoogle Scholar
  43. 43.
    F. Wang, X. Yang, X. Liu, T. Niu, J. Wang, Z. Mei, Y. Jian, Design of an ultra-thin absorption layer with magnetic materials based on genetic algorithm at the S band. J Magn Magn Mater 451, 770–773 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    Yuan Jie, Xiao Gang, Cao Mao-Sheng, A novel method of computation and optimization for multi-layered radar absorbing coatings using open source software. Mater Des 27, 45–52 (2006)CrossRefGoogle Scholar
  45. 45.
    Sotirios K. Goudos, A versatile software tool for microwave planar radar absorbing materials design using global optimization algorithms. Mater Des 28, 2585–2595 (2007)CrossRefGoogle Scholar
  46. 46.
    A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, LYu. Matzui, E.L. Trukhanova, S.V. Trukhanov, Control of electromagnetic properties in substituted M-type hexagonal ferrites. J. Alloys Compd. 754, 247–256 (2018)CrossRefGoogle Scholar
  47. 47.
    A.V. Trukhanov, S.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, D.A. Vinnik, E.S. Yakovenko, V.V. Zagorodnii, V.L. Launetz, V.V. Oliynyk, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanova, Correlation of the atomic structure, magnetic properties and microwave characteristics in substituted hexagonal ferrites. J. Magn. Magn. Mater. 462, 127–135 (2018)ADSCrossRefGoogle Scholar
  48. 48.
    A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, T.I. Zubar, E.S. Yakovenko, LYu. Macuy, E.L. Trukhanov, Critical influence of different diamagnetic ions on electromagnetic properties of BaFe12O19. Ceram Int. 44, 13520–13529 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Feiming Wei
    • 1
    • 2
  • Yonggang Xu
    • 2
    Email author
  • Wei Gao
    • 2
  • Dianliang Zheng
    • 3
  • Ting Liu
    • 3
  1. 1.Shanghai Key Laboratory of Intelligent Sensing and Recognition, School of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Science and Technology on Electromagnetic Scattering LaboratoryShanghaiChina
  3. 3.College of Aeronautical Engineering Vocational and TechnicalJilin Institute of Chemical TechnologyJilinChina

Personalised recommendations