Applied Physics A

, 125:653 | Cite as

Investigations on the electrical properties, domain structure, and local piezoelectric response in 0.3Pb(In1/2Nb1/2)–0.4Pb(Mg1/3Nb2/3)–0.3PbTiO3 single crystal

  • Yuchun Wang
  • Qingxiu Xie
  • Yang Wu
  • Xiangyong Zhao
  • Yanxue Tang
  • Zhihua Duan
  • Wangzhou Shi
  • Haosu Luo
  • Feifei WangEmail author
  • Tao WangEmail author


High-Curie temperature relaxor ferroelectric single crystals attracted attention recently due to the excellent global electrical properties for electromechanical devices. In this work, the electrical properties, domain structure, and local piezoelectric response of ternary 0.3Pb(In1/2Nb1/2)–0.4Pb(Mg1/3Nb2/3)–0.3PbTiO3 (0.3PIN-0.4PMN-0.3PT) single crystal was investigated. Large electric field-induced strain with little hysteresis was obtained in <001>-oriented high-quality crystal. Nanosized fingerprint pattern domain of ~ 100–300 nm with obvious local piezoelectric response was observed. The temperature-dependent dielectric spectrum revealed a ferroelectric rhombohedral to tetragonal phase transition at 106 °C, obviously higher than that of binary 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 single-crystal (~80 °C). The evolution of the ferroelectric property and strain response was also studied at elevated temperature. The temperature dependence of the PFM results demonstrated that the surface domain structure of the 0.3PIN–0.4PMN–0.3PT single crystals could still be detected above the Curie temperature. The local piezoelectric hysteresis loop exhibited strong dependence on the DC bias field and obvious local butterfly shape displacement curve could be induced at 180 °C under larger local DC field.



This work was supported by the National Natural Science Foundation of China (Grant nos. 11574214, 51772192, and 11974250), the Science and Technology Commission of Shanghai Municipality (Grant nos. 17070502700 and 19070502800).


  1. 1.
    S. Saitoh, M. Izumi, S. Shimanuki, S. Hashimoto, Y. Yamashita, Ultrasonic probe, United States Patent 5295487 (1994)Google Scholar
  2. 2.
    Y. Yamashita, S. Saitoh, Piezoelectric material and ultrasonic probe, United States Patent 5410209 (1994)Google Scholar
  3. 3.
    J.L. Xu, H. Deng, Z. Zeng et al., Piezoelectric performance enhancement of Pb(Mg1/3Nb2/3)O3–0.25PbTiO3 crystals by alternating current polarization for ultrasonic transducer. Appl. Phys. Lett. 112, 182901 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    Z.G. Ye, High-performance piezoelectric single crystals of complex perovskite solid solutions. MRS Bull. 34, 277–283 (2009)CrossRefGoogle Scholar
  5. 5.
    S.J. Zhang, F. Li, High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. J. Appl. Phys 111, 031301 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Z. Liang, C.D. Xu, B. Ren, H.S. Luo, D. Wang, A low frequency and broadband piezoelectric energy harvester using asymmetrically serials connected double clamped-clamped beams. Jpn. J. Appl. Phys. 53, 087101 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    L.Y. Li, J. Jiao, J.W. Chen et al., Magnetoelectric effect of the multi-push-pull mode in 0.35Pb(In1/2Nb1/2)O3–0.35Pb(Mg1/3Nb2/3)O3–0.30PbTiO3 metglas magnetoelectric composite. J. Appl. Phys. 114, 027011 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Z. Zeng, L.L. Gai, X. Wang et al., A plastic-composite-plastic structure high performance flexible energy harvester based on PIN-PMN-PT single crystal/epoxy 2–2 composite. Appl. Phys. Lett. 110, 103501 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    G.T. Hwang, Y. Kim, J. Lee, C.K. Jeong, D.Y. Park, Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energy Environ. Sci 8, 2677–2684 (2015)CrossRefGoogle Scholar
  10. 10.
    Y.Y. Zhang, X.B. Li, D.A. Liu et al., The compositional segregation, phase structure and properties of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystal. J. Cryst. Growth 318, 890–894 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    S.J. Zhang, J. Luo, W. Hackenberger, T.R. Shrout, Characterization of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ferroelectric crystal with enhanced phase transition temperatures. J. Appl. Phys. 104, 064106 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    C.S. Tu, C.L. Tsai, V.H. Schmidt, H.S. Luo, Z.W. Yin, Dielectric, hypersonic, and domain anomalies of (PbMg1/3Nb2/3O3)1 x(PbTiO3)x single crystals. J. Appl. Phys. 89, 7908–7916 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    H.S. Luo, G.S. Xu, H.Q. Xu, P.C. Wang, Z.W. Yin, Compositional homogeneity and electrical properties of lead magnesium niobate titanate single crystals grown by a modified Bridgman technique. Jpn. J. Appl. Phys 39, 5581–5584 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    K.S. Wong, B. Wang, J.Y. Dai, H.S. Luo, Ferroelectric domain in PMN-xPT single crystal studied by piezoresponse force microscopy and finite-element analysis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 952–956 (2008)CrossRefGoogle Scholar
  15. 15.
    I.K. Bdikin, J.A. Pérez, I. Coondoo et al., Ferroelectric domain structure of PbZr0.35Ti0.65O3 single crystals by piezoresponse force microscopy. J. Appl. Phys. 110, 052003 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    V.V. Shvartsman, A.L. Kholkin, Evolution of nanodomains in 0.9PbMg1/3Nb2/3O3–0.1PbTiO3 single crystals. J. Appl. Phys. 101, 064108 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Q. Li, Y. Liu, R.L. Withers, Y.H. Wan, Z.R. Li, Z. Xu, Piezoresponse force microscopy studies on the domain structures and local switching behavior of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. J. Appl. Phys 112, 052006 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Z.R. Li, K.X. Song, H.S. Luo et al., High composition uniformity of 4″ of PIN-PMN-PT single crystals grown by the modified Bridgman method. J. Cryst. Growth 468, 331–334 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    J.W. Chen, X.B. Li, X.Y. Zhao et al., Compositional segregation, structural transformation and property -temperature relationship of high-Curie temperature Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. J. Mater. Sci. Mater. Electron. 26, 9316–9328 (2015)CrossRefGoogle Scholar
  20. 20.
    K.X. Song, Z.R. Li, H.S. Guo, Z. Xu, S.J. Fan, Compositional segregation and electrical properties characterization of [001]- and [011]-oriented co-growth Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystal. J. Appl. Phys. 123, 154107 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    X.Z. Liu, S.J. Zhang, J. Luo, T.R. Shrout, W.W. Cao, A complete set of material properties of single domain 0.26Pb(In1/2Nb1/2)O3–0.46Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 single crystals. Appl. Phys. Lett. 96, 012907 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    X. Zhao, J.Y. Dai, J. Wang, H.L.W. Chan, C.L. Choy, Relaxor ferroelectric characteristics and temperature-dependent domain structure in a (110)-cut (110)-cut (PbMg1/3Nb2/3O3)0.75(PbTiO3)0.25 single crystal. Phys. Rev. B 72, 064114 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    D. Liu, C.G. Ma, H.S. Luo et al., Nanoscale insight into the domain structures of high Curie point Pb(In1/2Nb1/2)O3–PbTiO3 single crystal. J. Alloys Compd. 696, 166–170 (2017)CrossRefGoogle Scholar
  24. 24.
    N. Domingo, N. Bagues, J. Santiso, G. Catalan, Persistence of ferroelectricity above the Curie temperature at the surface of Pb(Zn1/3Nb2/3)O3–12%PbTiO3. Phys. Rev. B 91, 094111 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    M.M. Yang, D.J. Kim, M. Alexe, Flexo-photovoltaic effect. Science 360, 904–907 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    H. Lu, C.W. Bark, D. Ojos de los, J. Alcala, C.B. Eom, G. Catalan, A. Gruverman, Mechanical writing of ferroelectric polarization. Science 336, 59–61 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    L.F. Chen, Z.H. Cheng, W.T. Xu et al., Electrical and mechanical switching of ferroelectric polarization in the 70 nm BiFeO3 film. Sci. Rep. 6, 19092 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    W.F. Zhou, P. Chen, Q. Pan, X.T. Zhang, B.J. Chu, Lead-free metamaterials with enormous apparent piezoelectric response. Adv. Mater. 27, 6349–6355 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yuchun Wang
    • 1
  • Qingxiu Xie
    • 1
  • Yang Wu
    • 1
  • Xiangyong Zhao
    • 1
  • Yanxue Tang
    • 1
  • Zhihua Duan
    • 1
  • Wangzhou Shi
    • 1
  • Haosu Luo
    • 2
  • Feifei Wang
    • 1
    Email author
  • Tao Wang
    • 1
    Email author
  1. 1.Key Laboratory of Optoelectronic Material and Device, Department of PhysicsShanghai Normal UniversityShanghaiChina
  2. 2.Key Laboratory of Inorganic Functional Material and DeviceShanghai Institute of Ceramics, Chinese Academy of SciencesShanghaiChina

Personalised recommendations