Applied Physics A

, 125:668 | Cite as

Structural, morphological and optical properties of (ZnO)0.2 (ZrO2)0.8 nanoparticles

  • Ishaku Hamidu Midala
  • Halimah Mohamed KamariEmail author
  • Naif Mohammed Al-Hada
  • Chan Kar Tim
  • Suzliana Muhamad
  • Abdulkarim Muhammad Hamza
  • Tafida Rabiu Abubakar
  • Ibrahim Musa Nuhu


What paved way to the innovation of this research work is the ability to investigate the constituents of nanomaterials, which consist of inorganic and organic nanoparticles and organic polymers, considered as a brand-new classification of materials. A unique material is produced through this process which contains organic and inorganic nanoparticles and organic polymers. These materials exhibit improved characteristics when compared with their respective nanoscale size. In the present study, binary oxide (zinc oxide (ZnO))0.2 (zirconia oxide (ZrO2))0.8 nanoparticles (NPs) at constant concentration of polyvinylpyrrolidone (PVP), calcined at various temperatures were prepared by heat treatment technique. Zinc and zirconium nitrates (source of zinc and zirconium) with PVP (capping agent) was used to set up (ZnO)0.2 (ZrO2)0.8 NPs materials. Characterization of the materials was performed using the following analyses: thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and photoluminescence (PL). Thermal analysis (TGA) grants the optimization of the heat treatment technique and shows the required temperature for calcination to occur. XRD pattern analysis demonstrated that nanoparticles obtained after calcination indicated a hexagonal crystalline pattern of ZnO and tetragonal crystalline pattern of ZrO2 NPs. The FTIR spectroscopy phase analysis confirmed ZnO and ZrO2 are the original compounds of the prepared (ZnO)0.2 (ZrO2)0.8 NPs, respectively. TEM results indicated an increase in the average size of the sample from 21 to 29 nm due to increment in calcination temperature. Furthermore, PL spectra showed an increase in the intensity of PL as the particle size increased. The research work also looked at the optical application among the widespread applications of nanosized particles, binary oxide (ZnO)0.2 (ZrO2)0.8 as a new functional material.



The authors would like to thank the Faculty of Science, Universiti Putra Malaysia for Geran Putra Berimpak (9597200) for conducting this research.


  1. 1.
    H. Kamari et al., Calcined solution-based PVP influence on ZnO semiconductor nanoparticle properties. Crystals 7(2), 2 (2017)CrossRefGoogle Scholar
  2. 2.
    G. Varughese, K.T. Usha, A.S. Kumar, Characterisation and band gap energy of wurtzite ZnO nanocrystallites. Int. J. Latest Res. Sci. Technol. 3(3), 133–136 (2014)Google Scholar
  3. 3.
    Q.P. Zhang et al., A feasible strategy to balance the crystallinity and specific surface area of metal oxide nanocrystals. Sci. Rep. 7, 1–12 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    S. Stankic, S. Suman, F. Haque, J. Vidic, Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J. Nanobiotechnol. 14(1), 1–20 (2016)CrossRefGoogle Scholar
  5. 5.
    F. Hussin, H. Oktendy, S. Ling, L. Yuliati, Highly efficient zinc oxide-carbon nitride composite photocatalysts for degradation of phenol under UV and visible light irradiation. Malays. J. Fund. Appl. Sci. 14, 159–163 (2018)CrossRefGoogle Scholar
  6. 6.
    R. Saravanan, F. Gracia, A. Stephen, Nanocomposites for Visible Light-induced Photocatalysis (Springer, Berlin, 2017), pp. 19–41CrossRefGoogle Scholar
  7. 7.
    G.F. Samu et al., Photocatalytic, photoelectrochemical, and antibacterial activity of benign-by-design mechanochemically synthesized metal oxide nanomaterials. Catal. Today 284, 3–10 (2017)CrossRefGoogle Scholar
  8. 8.
    A.K. Singh, U.T. Nakate, Properties of nanocrystalline zirconia. Sci. J. 2014(21), 1–7 (2014)Google Scholar
  9. 9.
    F. Kremer, The dielectric properties of proteins. Dielectr. Newsl. 31, 2–3 (1996)Google Scholar
  10. 10.
    E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982), pp. 1–3Google Scholar
  11. 11.
    J.M. Vohs, R.J. Gorte, S. Park, Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404(6775), 265–267 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    E.C. Subbarao, H.S. Maiti, Science and technology of zirconia. Adv. Ceram. 24, 731–737 (1988)Google Scholar
  13. 13.
    A.A. Madfa, F.A. Al-Sanabani, N.H. Al-Qudami, J.S. Al-Sanabani, A.G. Amran, Use of zirconia in dentistry: an overview. Open Biomater. J. 5(1), 1–7 (2014)CrossRefGoogle Scholar
  14. 14.
    Y.G. Jung, I.M. Peterson, D.K. Kim, B.R. Lawn, Lifetime-limiting strength degradation from contact fatigue in dental ceramics. J. Dent. Res. 79(2), 722–731 (2000)CrossRefGoogle Scholar
  15. 15.
    A.H. De Aza, P. Velásquez, M.I. Alemany, P. Pena, P.N. De Aza, In situ bone-like apatite formation from a bioeutectic® ceramic in SBF dynamic flow. J. Am. Ceram. Soc. 90(4), 1200–1207 (2007)CrossRefGoogle Scholar
  16. 16.
    M.N. Aboushelib, Z. Salameh, Zirconia implant abutment fracture: clinical case reports and precautions for use. Br. Dent. J. 208(8), 353 (2009)Google Scholar
  17. 17.
    C.E. Quek, K.B. Tan, J.I. Nicholls, Load fatigue performance of a single-tooth implant abutment system: effect of diameter. Int. J. Oral Maxillofac. Implants 21(6), 929–936 (2006)Google Scholar
  18. 18.
    B. Ohlmann, K. Marienburg, O. Gabbert, A. Hassel, H. Gilde, P. Rammelsberg, Fracture-load values of all-ceramic cantilevered FPDs with different framework designs. Int. J. Prosthodont. 22(1), 49–52 (2009)Google Scholar
  19. 19.
    D. Tan et al., Synthesis of nanocrystalline cubic zirconia using femtosecond laser ablation. J. Nanoparticle Res. 13(3), 1183–1190 (2011)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    V.S. Reddy Channu, R.R. Kalluru, M. Schlesinger, M. Mehring, R. Holze, Synthesis and characterization of ZrO2 nanoparticles for optical and electrochemical applications. Colloids Surf. A Physicochem. Eng. Asp. 386(1–3), 151–157 (2011)Google Scholar
  21. 21.
    S.E. Porozova, B.L. Krasnyi, V.P. Tarasovskii, A.B. Krasnyi, Preparation of zirconia ceramics from powder synthesized by a sol–gel method. Refract. Ind. Ceram. 50(6), 438–440 (2009)CrossRefGoogle Scholar
  22. 22.
    F. Heshmatpour, R.B. Aghakhanpour, Synthesis and characterization of nanocrystalline zirconia powder by simple sol-gel method with glucose and fructose as organic additives. Powder Technol. 205(1–3), 193–200 (2011)CrossRefGoogle Scholar
  23. 23.
    P. Moravec, J. Smolík, H. Keskinen, J.M. Mäkelä, V.V. Levdansky, Vapor phase synthesis of zirconia fine particles from zirconium Tetra-Tert-Butoxide. Aerosol Air Qual. Res. 7(4), 563–577 (2017)CrossRefGoogle Scholar
  24. 24.
    A.A. Baqer, K.A. Matori, N.M. Al-Hada, A.H. Shaari, E. Saion, J.L.Y. Chyi, Effect of polyvinylpyrrolidone on cerium oxide nanoparticle characteristics prepared by a facile heat treatment technique. Results Phys. 7, 611–619 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    A. Adamski, P. Jakubus, Z. Sojka, Synthesis of nanostructured tetragonal ZrO2 of enhanced thermal stability. Nukleonika 51(SUPPL. 1), 27–33 (2006)Google Scholar
  26. 26.
    R.A. Espinoza-González, D.E. Diaz-Droguett, J.I. Avila, C.A. Gonzalez-Fuentes, V.M. Fuenzalida, Hydrothermal growth of zirconia nanobars on zirconium oxide. Mater. Lett. 65(14), 2121–2123 (2011)CrossRefGoogle Scholar
  27. 27.
    M. Tada, Y. Iwasawa,  Supported Catalysts from Chemical Vapor Deposition and Related Techniques. Handbook of Heterogeneous Catalysis, Supported Catalysis (2008), pp. 539–569Google Scholar
  28. 28.
    F. Scholz, Compound Semiconductors: Physics, Technology, and Device Concepts. Engineering & Technology, Physical Sciences, 1st edn. (Jenny Stanford Publishing, New York, 2017), pp. 2–8CrossRefGoogle Scholar
  29. 29.
    A. Salem, E. Saion, N.M. Al-Hada, H.M. Kamari, A.H. Shaari, S. Radiman, Simple synthesis of ZnSe nanoparticles by thermal treatment and their characterization. Results Phys. 7, 1175–1180 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    N.M. Al-Hada et al., A facile thermal-treatment route to synthesize ZnO nanosheets and effect of calcination temperature. PLoS ONE 9(8), e103134 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    A. Kolodziejczak-Radzimska, T. Jesionowski, Zinc oxide-from synthesis to application: a review. Materials (Basel) 7(4), 2833–2881 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    S. Sahoo et al., Microwave assisted synthesis of ZnO nano-sheets and their application in UV-detector. ECS J. Solid State Sci. Technol. 1(6), Q140–Q143 (2012)CrossRefGoogle Scholar
  33. 33.
    Z.M. Kakhaki, A. Youzbashi, N. Naderi, Optical properties of zinc oxide nanoparticles prepared by a one-step mechanochemical synthesis method. J. Phys. Sci. 26(2), 41–51 (2015)Google Scholar
  34. 34.
    M. Division, The theory of Ostwald ripening. J. Stat. Phys. 38(1), 231–252 (1985)Google Scholar
  35. 35.
    S. Karim, K. Maaz, G. Ali, W. Ensinger, Diameter dependent failure current density of gold nanowires. J. Phys. D. Appl. Phys. 42(18), 185403 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    A.A. Baqer et al., Copper oxide nanoparticles synthesized by a heat treatment approach with structural, morphological and optical characteristics. J. Mater. Sci. Mater. Electron. 29(2), 1025–1033 (2018)CrossRefGoogle Scholar
  37. 37.
    N.M. Al-Hada et al., Structural, morphological and optical behaviour of PVP capped binary (ZnO)0.4 (CdO)0.6 nanoparticles synthesised by a facile thermal route. Mater. Sci. Semicond. Process. 53, 56–65 (2016)CrossRefGoogle Scholar
  38. 38.
    H.M. Kamari, N.M. Al-Hada, A.A. Baqer, A.H. Shaari, E. Saion, Comprehensive study on morphological, structural and optical properties of Cr2O3 nanoparticle and its antibacterial activities. J. Mater. Sci. Mater. Electron. 30, 8035–8046 (2019)CrossRefGoogle Scholar
  39. 39.
    L. Gu et al., Band-gap measurements of direct and indirect semiconductors using monochromated electrons. Phys. Rev. B Condens. Matter Mater. Phys. 75(19), 195214 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    A. Salem et al., Synthesis and characterization of CdSe nanoparticles via thermal treatment technique. Results Phys. 7, 1556–1562 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    N.M. Al-Hada, E. Saion, Z.A. Talib, A.H. Shaari, The impact of polyvinylpyrrolidone on properties of cadmium oxide semiconductor nanoparticles manufactured by heat treatment technique. Polymers (Basel) 8(4), 113 (2016)CrossRefGoogle Scholar
  42. 42.
    N.M. Al-Hada et al., Down-top nanofabrication of binary (CdO)x (ZnO)1−x nanoparticles and their antibacterial activity. Int. J. Nanomed. 12, 8309–8323 (2017)CrossRefGoogle Scholar
  43. 43.
    N. Talebian, S.M. Amininezhad, M. Doudi, Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol. B Biol. 120, 66–73 (2013)CrossRefGoogle Scholar
  44. 44.
    A.A. Baqer et al., Synthesis and characterization of binary (CuO)0.6 (CeO2)0.4 nanoparticles via a simple heat treatment method. Results Phys. 9, 471–478 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    M. Hashem et al., Fabrication and characterization of semiconductor nickel oxide (NiO) nanoparticles manufactured using a facile thermal treatment. Results Phys. 6, 1024–1030 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    S.A. Gene, E.B. Saion, A.H. Shaari, M.A. Kamarudeen, N.M. Al-Hada, Fabrication and characterization of nanospinel ZnCr2O4 using thermal treatment method. Adv. Mater. Res. 1107, 301–307 (2015)CrossRefGoogle Scholar
  47. 47.
    N.M. Al-Hada, H.M. Kamari, A.A. Baqer, A.H. Shaari, E. Saion, Thermal calcination-based production of SnO2 nanopowder: an analysis of SnO2 nanoparticle characteristics and antibacterial activities. Nanomaterials 8(4), 250 (2018)CrossRefGoogle Scholar
  48. 48.
    N.M. Al-Hada, M.K. Halimah, A.H. Shaari, E. Saion, S.A. Aziz, I.S. Mustafa, Structural and Morphological Properties of Manganese-Zinc Ferrite Nanoparticles Prepared by Thermal Treatment Route, Solid State Phenomena (Trans Tech Publications, 2019), pp. 307–313Google Scholar
  49. 49.
    N.M. Al-Hada, H.M. Kamari, A.H. Shaari, E. Saion, Fabrication and characterization of Manganese–Zinc ferrite nanoparticles produced utilizing heat treatment technique. Results Phys. 12, 1821–1825 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ishaku Hamidu Midala
    • 1
    • 3
  • Halimah Mohamed Kamari
    • 1
    Email author
  • Naif Mohammed Al-Hada
    • 1
    • 2
  • Chan Kar Tim
    • 1
  • Suzliana Muhamad
    • 1
  • Abdulkarim Muhammad Hamza
    • 1
    • 5
  • Tafida Rabiu Abubakar
    • 1
    • 4
  • Ibrahim Musa Nuhu
    • 3
  1. 1.Department of Physics, Faculty of ScienceUniversiti Putra Malaysia (UPM)SerdangMalaysia
  2. 2.Nuclear Engineering Programme, Faculty of Engineering, School of Chemical and Energy EngineeringUniversiti Teknologi Malaysia (UTM)SkudaiMalaysia
  3. 3.Department of Science Laboratory TechnologyFederal Polytechnic MubiMubiNigeria
  4. 4.Department of PhysicsNigerian Defence AcademyAfakaNigeria
  5. 5.National Agency for Science and Engineering InfrastructureAbujaNigeria

Personalised recommendations