Advertisement

Applied Physics A

, 125:657 | Cite as

Influence of synthesis route on structural, optical, and electrical properties of TiO2

  • Vani Pawar
  • Manish Kumar
  • P. K. Dubey
  • Manish K. Singh
  • A. S. K. Sinha
  • Prabhakar SinghEmail author
Article
  • 63 Downloads

Abstract

TiO2 samples with two different morphology were synthesized via sol–gel and hydrothermal techniques. The effect of synthesis procedure on structural, morphological, optical, and electrical properties was studied. Rietveld analysis revealed that anatase phase having tetragonal structure dominates at room temperature. The presence of anatse phase of TiO2 was further confirmed by the analysis of various peaks obtained from the Raman spectra. The field-emission scanning electron microscopy (FESEM) and transmission electron microscopy micrographs depicted the formation of two different kinds of morphologies with average particle size ranging from 9.87 to 11.35 nm. The FESEM micrographs showed homogeneous particle distribution for sol–gel synthesized sample, whereas it depicted rod-like structure in the sample synthesized via hydrothermal technique. The X-ray photoelectron spectroscopy analysis clearly indicated the presence of appropriate chemical composition and valency states of Ti and O element in TiO2 samples. The optical bandgap was estimated from the UV–visible spectra and found to be in corroboration with the reported values. The conductivity spectra were analyzed using Jonscher power law. The values of activation energy suggested that the conduction mechanism is thermally activated. The conductivity isotherms were scaled through Ghosh scaling model. In the sol–gel synthesized sample, the conduction mechanism was found to be independent of temperature in the entire measured temperature range; however, the hydrothermally synthesized sample depicted that the conduction mechanism is temperature-dependent in the measured temperature range. This discrepancy was understood in terms of structural changes and charge trapping within the structure.

Notes

Acknowledgements

Authors are thankful to Dr. S. K. Gupta (Department of Physics, Banasthali Vidyapeeth, Banasthali, Rajasthan) for providing Raman measurement facility.

References

  1. 1.
    D.V. Wellia, Q.C. Xu, M.A. Sk, K.H. Lim, T.M. Lim, T.T.Y. Tan, Experimental and theoretical studies of Fe-doped TiO2 films prepared by peroxo sol–gel method. Appl. Catal. A Gen. 401(1–2), 98–105 (2011)CrossRefGoogle Scholar
  2. 2.
    H. Sun, Y. Bai, H. Liu, W. Jin, N. Xu, G. Chen et al., Mechanism of nitrogen-concentration dependence on pH value: experimental and theoretical studies on nitrogen-doped TiO2. J. Phys. Chem. C 112(34), 13304–13309 (2008)CrossRefGoogle Scholar
  3. 3.
    J. Yu, X. Zhao, Q. Zhao, Photocatalytic activity of nanometer TiO2 thin films prepared by the sol–gel method. Mater. Chem. Phys. 69(1–3), 25–29 (2001)CrossRefGoogle Scholar
  4. 4.
    B. Sun, T. Shi, Z. Peng, W. Sheng, T. Jiang, G. Liao, Controlled fabrication of Sn/TiO2 nanorods for photoelectrochemical water splitting. Nanoscale Res. Lett. 8(1), 1 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    L.-S. Liao, C.-H. Li, L.-L. Jiang, P.-F. Fang, Z.-K. Wang, M. Li, Enhanced electrical property of compact TiO2 layer via platinum doping for high-performance perovskite solar cells. Sol. RRL 2(11), 1800149 (2018)CrossRefGoogle Scholar
  6. 6.
    H. Tang, K. Prasad, R. Sanjines, F. Levy, TiO2 anatase thin-films as gas sensors. Sens. Actuators B Chem. 26, 71–75 (1995)CrossRefGoogle Scholar
  7. 7.
    D.P. MacWan, P.N. Dave, S. Chaturvedi, A review on nano-TiO2 sol–gel type syntheses and its applications. J. Mater. Sci. 46(11), 3669–3686 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    V. Caratto, L. Setti, S. Campodonico, M.M. Carnasciali, R. Botter, M. Ferretti, Synthesis and characterization of nitrogen-doped TiO2 nanoparticles prepared by sol–gel method. J. Sol Gel Sci. Technol. 63(1), 16–22 (2012)CrossRefGoogle Scholar
  9. 9.
    M.I. Dar, A.K. Chandiran, M. Grätzel, M.K. Nazeeruddin, S.A. Shivashankar, Controlled synthesis of TiO2 nanoparticles and nanospheres using a microwave assisted approach for their application in dye-sensitized solar cells. J. Mater. Chem. A 2(6), 1662–1667 (2014)CrossRefGoogle Scholar
  10. 10.
    Y. Cheng, M. Zhang, G. Yao, L. Yang, J. Tao, Z. Gong et al., Band gap manipulation of cerium doping TiO2 nanopowders by hydrothermal method. J. Alloys Compd. 662, 179–184 (2016).  https://doi.org/10.1016/j.jallcom.2015.12.034 CrossRefGoogle Scholar
  11. 11.
    A. Mamakhel, E.D. Bøjesen, P. Hald, B.B. Iversen, Direct formation of crystalline phase pure rutile TiO2 nanostructures by a facile hydrothermal method. Cryst. Growth Des. 13(11), 4730–4734 (2013)CrossRefGoogle Scholar
  12. 12.
    A. Dey, S. De, A. De, S.K. De, Characterization and dielectric properties of polyaniline–TiO2 nanocomposites. Nanotechnology 15(9), 1277–1283 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    R.J. Konwar, R. Sharma, G. Kaur, A. Mahajan, M. Kaur, P. Negi, Morpho-structural and opto-electrical properties of chemically tuned nanostructured TiO2. Ceram. Int. 44(15), 18484–18490 (2018).  https://doi.org/10.1016/j.ceramint.2018.07.068 CrossRefGoogle Scholar
  14. 14.
    S. Takeda, S. Suzuki, H. Odaka, H. Hosono, Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering. Thin Solid Films 392(2), 338–344 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Z. Ding, X. Hu, P.L. Yue, G.Q. Lu, P.F. Greenfield, Synthesis of anatase TiO2 supported on porous solids by chemical vapor deposition. Catal. Today 68(1–3), 173–182 (2001)CrossRefGoogle Scholar
  16. 16.
    C. Giolli, F. Borgioli, A. Credi, Fabio A. Di, A. Fossati, M.M. Miranda et al., Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system. Surf. Coat. Technol. 202(1), 13–22 (2007)CrossRefGoogle Scholar
  17. 17.
    G. Verma, A.K. Tripathi, M.M. Ahmad, M.K. Singh, R.K. Srivastava, A. Agarwal et al., Synthesis based structural and optical behavior of anatase TiO2 nanoparticles. Mater. Sci. Semicond. Process. 23, 136–143 (2014)CrossRefGoogle Scholar
  18. 18.
    A. Yuvapragasam, N. Muthukumarasamy, S. Agilan, D. Velauthapillai, T.S. Senthil, S. Sundaram, Natural dye sensitized TiO2 nanorods assembly of broccoli shape based solar cells. J. Photochem. Photobiol. B Biol. (2015).  https://doi.org/10.1016/j.jphotobiol.2015.04.017 CrossRefGoogle Scholar
  19. 19.
    S.H. Song, X. Wang, P. Xiao, Effect of microstructural features on the electrical properties of TiO2. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 94(1), 40–47 (2002)CrossRefGoogle Scholar
  20. 20.
    D. Mardare, C. Baban, R. Gavrila, M. Modreanu, G.I. Rusu, On the structure, morphology and electrical conductivities of titanium oxide thin films. Surf. Sci. 507–510, 468–472 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    R.G. Breckenridge, W.R. Hosler, Electrical properties of titanium dioxide semiconductors. Phys. Rev. 91(4), 793–802 (1953)ADSCrossRefGoogle Scholar
  22. 22.
    B. Roling, C. Martiny, S. Murugavel, Ionic conduction in glass: new information on the interrelation between the “jonscher behavior” and the “nearly constant-loss behavior” from broadband conductivity spectra. Phys. Rev. Lett. 87(8), 85901-1–85901-2 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    A.K. Jonscher, The “universal” dielectric response. Nature 267, 673–679 (1977)ADSCrossRefGoogle Scholar
  24. 24.
    S. Summerfield, Universal low-frequency behaviour in the a.c. hopping conductivity of disordered systems. Philos. Mag. B Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop 52(1), 9–22 (1985)ADSGoogle Scholar
  25. 25.
    D.L. Sidebottom, Universal approach for scaling the ac conductivity in ionic glasses. Phys. Rev. Lett. 82(18), 3653–3656 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    A. Ghosh, A. Pan, Scaling of the conductivity spectra in ionic glasses: dependence on the structure. Phys. Rev. Lett. 84(10), 2188–2190 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    H. Tang, K. Prasad, R. Sanjinès, P.E. Schmid, F. Lévy, Electrical and optical properties of TiO2 anatase thin films electrical and optical properties of TiO2 anatase thin films. J. Appl. Phys. 75, 2042 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    I.A. Alhomoudi, G. Newaz, Residual stresses and Raman shift relation in anatase TiO2 thin film. Thin Solid Films 517(15), 4372–4378 (2009).  https://doi.org/10.1016/j.tsf.2009.02.141 ADSCrossRefGoogle Scholar
  29. 29.
    C. Ashok, Rao K. Venkateswara, ZnO/TiO2 nanocomposite rods synthesized by microwave-assisted method for humidity sensor application. Superlattices Microstruct. 76, 46–54 (2014).  https://doi.org/10.1016/j.spmi.2014.09.029 ADSCrossRefGoogle Scholar
  30. 30.
    M. Razavi, M.R. Rahimipour, R. Kaboli, Synthesis of TiC nanocomposite powder from impure TiO2 and carbon black by mechanically activated sintering. J. Alloys Compd. 460(1–2), 694–698 (2008)CrossRefGoogle Scholar
  31. 31.
    H.C. Choi, Y.M. Jung, S.B. Kim, Size effects in the Raman spectra of TiO2 nanoparticles. Vib. Spectrosc. 37(1), 33–38 (2005)CrossRefGoogle Scholar
  32. 32.
    F. Tian, Y. Zhang, J. Zhang, C. Pan, Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets. J. Phys. Chem. C 116(13), 7515–7519 (2012)CrossRefGoogle Scholar
  33. 33.
    Z. Yin, W.F. Zhang, Y.L. He, Q. Chen, M.S. Zhang, Raman scattering study on anatase TiO2 nanocrystals. J. Phys. D Appl. Phys. 33(8), 912–916 (2002)Google Scholar
  34. 34.
    X. Pan, M.Q. Yang, X. Fu, N. Zhang, Y.J. Xu, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 5(9), 3601–3614 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    B. Bharti, S. Kumar, H.N. Lee, R. Kumar, Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 6, 1–12 (2016).  https://doi.org/10.1038/srep32355 CrossRefGoogle Scholar
  36. 36.
    L.C. Lucas, G.N. Raikar, R. Connatser, J.L. Ong, J.C. Gregory, Spectroscopic characterization of passivated titanium in a physiologic solution. J. Mater. Sci. Mater. Med. 6(2), 113–119 (2004)Google Scholar
  37. 37.
    L.B. Xiong, J.L. Li, B. Yang, Y. Yu, Ti3+ in the surface of titanium dioxide: generation, properties and photocatalytic application. J Nanomater. 2012, 831524 (2012).  https://doi.org/10.1155/2012/831524 CrossRefGoogle Scholar
  38. 38.
    V. Pawar, M. Kumar, P.A. Jha, S.K. Gupta, P.K. Jha, P. Singh, Cs/MAPbI3 composite formation and its influence on optical properties. J. Alloys Compd. 783, 935–942 (2019)CrossRefGoogle Scholar
  39. 39.
    M. Kumar, V. Pawar, P.A. Jha, S.K. Gupta, A.S.K. Sinha, P.K. Jha et al., Thermo-optical correlation for room temperature synthesis: cold-sintered lead halides. J. Mater. Sci. Mater. Electron. 30(6), 6071–6081 (2019)CrossRefGoogle Scholar
  40. 40.
    J.S. Lee, K.H. You, C.B. Park, Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv. Mater. 24(8), 1084–1088 (2012)CrossRefGoogle Scholar
  41. 41.
    K. Nagaveni, M.S. Hegde, N. Ravishankar, G.N. Subbanna, G. Madras, Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 20(7), 2900–2907 (2004)CrossRefGoogle Scholar
  42. 42.
    V. Pawar, P.K. Jha, S.K. Panda, P.A. Jha, P. Singh, Band-gap engineering in ZnO thin films: a combined experimental and theoretical study. Phys. Rev. Appl. 9(5), 54001 (2018).  https://doi.org/10.1103/PhysRevApplied.9.054001 ADSCrossRefGoogle Scholar
  43. 43.
    P. Singh, R.K. Singh, Structural characterization, electrical and dielectric relaxations in Dy-doped zirconia. J. Alloys Compd. 549, 238–244 (2013).  https://doi.org/10.1016/j.jallcom.2012.09.059 CrossRefGoogle Scholar
  44. 44.
    S.R. Elliott, A.C. conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36(2), 135–217 (1987)ADSCrossRefGoogle Scholar
  45. 45.
    P. Singh, O. Parkash, D. Kumar, Scaling of low-temperature conductivity spectra of BaSn1– xNbxO3 (x ≤ 0 100): temperature and compositional-independent conductivity. Phys. Rev. B. 84(17), 174306 (2011).  https://doi.org/10.1103/PhysRevB.84.174306 ADSCrossRefGoogle Scholar
  46. 46.
    N.K. Singh, P. Singh, M.K. Singh, D. Kumar, O. Parkash, Auto-combustion synthesis and properties of Ce0.85Gd0.15O1.925 for intermediate temperature solid oxide fuel cells electrolyte. Solid State Ion. 192(1), 431–434 (2011).  https://doi.org/10.1016/j.ssi.2010.04.015 CrossRefGoogle Scholar
  47. 47.
    B. Roling, A. Happe, K. Funke, M.D. Ingram, Carrier concentrations and relaxation spectroscopy: new information from scaling properties of conductivity spectra in ionically conducting glasses. Phys. Rev. Lett. 78(11), 2160–2163 (1997)ADSCrossRefGoogle Scholar
  48. 48.
    A.K. Yadav, P.A. Jha, S. Murugavel, P. Singh, Synthesis, characterization and AC conductivity of alkali metal substituted telluride glasses. Solid State Ion. 296, 54–62 (2016).  https://doi.org/10.1016/j.ssi.2016.08.013 CrossRefGoogle Scholar
  49. 49.
    M. Khutia, G.M. Joshi, S. Bhattacharya, Study of electrical relaxation mechanism of TiO2 doped Bi-polymer systems. Adv. Mater. Lett. 7(3), 201–208 (2016)CrossRefGoogle Scholar
  50. 50.
    S. Murugavel, B. Roling, Ion transport mechanism in borate glasses: influence of network structure on non-Arrhenius conductivity. Phys. Rev. B Condens. Matter Mater. Phys. 76(18), 2–5 (2007)CrossRefGoogle Scholar
  51. 51.
    D.N. Singh, T.P. Sinha, D.K. Mahato, Electric modulus, scaling and ac conductivity of La2CuMnO6 double perovskite. J. Alloys Compd. 729, 1226–1233 (2017).  https://doi.org/10.1016/j.jallcom.2017.09.241 CrossRefGoogle Scholar
  52. 52.
    P.A. Jha, A.K. Yadav, P.K. Jha, P. Singh, AC conductivity and ion dynamics of alkaline earth metal substituted telluride glasses. J. Non Cryst. Solids 452, 203–209 (2016).  https://doi.org/10.1016/j.jnoncrysol.2016.08.043 ADSCrossRefGoogle Scholar
  53. 53.
    O.N. Verma, N.K. Singh, P. Singh, Study of ion dynamics in lanthanum aluminate probed by conductivity spectroscopy. RSC Adv. 5(28), 21614–21619 (2015).  https://doi.org/10.1039/C5RA01146A CrossRefGoogle Scholar
  54. 54.
    P. Singh, B.P. Singh, Dispersion in AC conductivity of fragile glass melts near glass transition temperature. Solid State Ion. 227, 39–45 (2012).  https://doi.org/10.1016/j.ssi.2012.08.021 CrossRefGoogle Scholar
  55. 55.
    D.A.H. Hanaor, C.C. Sorrell, Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855–874 (2011).  https://doi.org/10.1007/s10853-010-5113-0 ADSCrossRefGoogle Scholar
  56. 56.
    M.K. Nowtony, T. Bak, J. Nowtony, Electrical properties and defect chemositry of TiO2 single crystal. I. Electrical conductivity. J. Phys. Chem. (2006).  https://doi.org/10.1021/jp0606210 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
  2. 2.Department of Metallurgical EngineeringIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
  3. 3.Department of Chemical EngineeringIndian Institute of Technology (Banaras Hindu University)VaranasiIndia

Personalised recommendations