Advertisement

Applied Physics A

, 125:650 | Cite as

Experimental and ab-initio investigation of the microstructure and optoelectronic properties of FCM–CVD-prepared Al-doped ZnO thin films

  • Ilyass Jellal
  • Hassan Ahmoum
  • Yassine Khaaissa
  • Khalid NounehEmail author
  • Mourad Boughrara
  • Mounir Fahoume
  • Siddheshwar Chopra
  • Jamal Naja
Article

Abstract

In this research, pure and aluminium-doped zinc oxide (ZnO) thin films (5–50%) have been synthesized by the fine-channel mist chemical vapor deposition (FCM-CVD) technique. The microstructure and optoelectronic properties of the films have been characterized with the help of scanning electron microscope (SEM), X-ray diffraction (XRD), and UV–visible absorption (UV–Vis), respectively. The critical-doping (Al) concentration of ZnO was found to be 10%. Below this concentration of Al, the preferential orientation of the films was found to be along (002). Moreover, the films are in tensile states and the optical bandgap values found to be decreasing. For heavy doping concentration, the films are found to be in the compression states, and the optical bandgap increased with the Al concentration. To validate our experimental results, DFT calculations were performed to show and explain the origin of the variation of bandgap, tensile, and compression states.

Notes

Acknowledgements

The Authors would like to acknowledge the support through the R&D Initiative—Call for projects around phosphates APPHOS—sponsored by OCP (OCP Foundation, R&D OCP, Mohammed VI Polytechnic University, National Center of Scientific and technical Research CNRST, Ministry of Higher Education, Scientific Research and Professional Training of Morocco MESRSFC) under the project entitled *Development of a phosphate-based photocatalytic reactor prototype for the treatment and recycling of wastewater*, project ID: TRT-NAJ-01/2017.

References

  1. 1.
    R.K. Sonker, S. Sikarwar, S.R.R. Sabhajeet, B.C. Yadav, Opt. Mater. 83, 342 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    S. Hamrouni, M.S. AlKhalifah, M.S. El-Bana, S.K. Zobaidi, S. Belgacem, Appl. Phys. A 124, 555 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    N. Bano, I. Hussain, O. Nur, M. Willander, H.S. Kwack, D.S. Dang, Appl. Phys. A 100, 467 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    N. Kaymak, E. Efil, E. Seven, A. Tataroğlu, S. Bilge, E.Ö. Orhan, Mater. Res. Express 6, 026309 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    Q. Yang, K. Tang, J. Zuo, Y. Qian, Appl. Phys. A 79, 1847 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    C. Wang, H. Fan, X. Ren, J. Fang, Appl. Phys. A 124, 99 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    P.-T. Hsieh, Y.-C. Chen, K.-S. Kao, C.-M. Wang, Appl. Phys. A 90, 317 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    J. Nishio, M. Tokumura, H.T. Znad, Y. Kawase, J. Hazard. Mater. 138, 106 (2006)CrossRefGoogle Scholar
  9. 9.
    Q.H. Li, D. Zhu, W. Liu, Y. Liu, X.C. Ma, Appl. Surf. Sci. 254, 2922 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    A. Raidou, F. Benmalek, T. Sall, M. Aggour, A. Qachaou, L. Laanab, M. Fahoume, OALib 01, 1 (2014)CrossRefGoogle Scholar
  11. 11.
    C. Zhu, T. Zhou, F. Shi, W. Song, J. Li, W. Wu, Appl. Phys. A 124, 850 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    A. Jamil, S. Fareed, N. Tiwari, C. Li, B. Cheng, X. Xu, M.A. Rafiq, Appl. Phys. A 125, 238 (2019)ADSCrossRefGoogle Scholar
  13. 13.
    K. Nouneh, T. Ajjammouri, Z. Laghfour, A. Maaroufi, M. Abd-Lefdil, D. Chaumont, Z. Sekkat, Mater. Lett. 139, 26 (2015)CrossRefGoogle Scholar
  14. 14.
    W. Lu, D. Zhu, Appl. Phys. A 125, 68 (2019)ADSCrossRefGoogle Scholar
  15. 15.
    M. Fahoume, O. Maghfoul, M. Aggour, B. Hartiti, F. Chraïbi, A. Ennaoui, Sol. Energy Mater. Sol. Cells 90, 1437 (2006)CrossRefGoogle Scholar
  16. 16.
    U. Chaitra, M.G. Mahesha, D. Kekuda, K.M. Rao, Appl. Phys. A 125, 394 (2019)ADSCrossRefGoogle Scholar
  17. 17.
    K. Ghosh, R.K. Pandey, Appl. Phys. A 125, 98 (2019)ADSCrossRefGoogle Scholar
  18. 18.
    S. Goudarzi, K. Khojier, Appl. Phys. A 124, 601 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    V. Kumar, H. Sharma, S.K. Singh, S. Kumar, A. Vij, Appl. Phys. A 125, 212 (2019)ADSCrossRefGoogle Scholar
  20. 20.
    T. Kawaharamura, H. Nishinaka, S. Fujita, Jpn. J. Appl. Phys. 47, 4669 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    K. Ozga, T. Kawaharamura, A.A. Umar, M. Oyama, K. Nouneh, A. Slezak, S. Fujita, M. Piasecki, A.H. Reshak, I.V. Kityk, Nanotechnology 19, 185709 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    H.-J. Jeon, S.-G. Lee, K.-S. Shin, S.-W. Kim, J.-S. Park, J. Alloys Compd. 614, 244 (2014)CrossRefGoogle Scholar
  23. 23.
    T. Kawaharamura, H. Nishinaka, Y. Kamaka, Y. Masuda, J.-G. Lu, S. Fujita, J. Korean Phys. Soc. 53, 2976 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    R.J. Lang, J. Acoust. Soc. Am. 34, 6 (1962)ADSCrossRefGoogle Scholar
  25. 25.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter. 21, 395502 (2009)CrossRefGoogle Scholar
  26. 26.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    S. Haller, J. Rousset, G. Renou, D. Lincot, EPJ Photovolt. 2, 20401 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    J.-L. Zhao, X.-M. Li, J.-M. Bian, W.-D. Yu, C.-Y. Zhang, J. Cryst. Growth 280, 495 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    M. Bizarro, Appl. Catal. B Environ. 97, 198 (2010)CrossRefGoogle Scholar
  31. 31.
    M. Bizarro, A. Sánchez-Arzate, I. Garduño-Wilches, J.C. Alonso, A. Ortiz, Catal. Today 166, 129 (2011)CrossRefGoogle Scholar
  32. 32.
    C.-H. Zhai, R.-J. Zhang, X. Chen, Y.-X. Zheng, S.-Y. Wang, J. Liu, N. Dai, L.-Y. Chen, Nanoscale Res. Lett. 11, 407 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    B.D. Cullity, J.W. Weymouth, Am. J. Phys. 25, 394 (1957)ADSCrossRefGoogle Scholar
  34. 34.
    O. Daoudi, Y. Qachaou, A. Raidou, K. Nouneh, M. Lharch, M. Fahoume, Superlatt. Microstruct. 127, 93 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    M.K. Puchert, P.Y. Timbrell, R.N. Lamb, J. Vac. Sci. Technol. Vac. Surf. Films 14, 2220 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    G.A. Kumar, M.V.R. Reddy, K.N. Reddy, IOP Conf. Ser. Mater. Sci. Eng. 73, 012133 (2015)CrossRefGoogle Scholar
  37. 37.
    J. Mathew, J. Mathew, S.O.P. Trans, Nano-Technol. 1, 1 (2014)Google Scholar
  38. 38.
    T.P. Rao, M.S. Kumar, V. Ganesan, Indian J. Phys. 85, 1381 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    B.K. Sharma, N. Khare, J. Phys. Appl. Phys. 43, 465402 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    J. Mass, P. Bhattacharya, R.S. Katiyar, Mater. Sci. Eng. B 103, 9 (2003)CrossRefGoogle Scholar
  41. 41.
    S. Shanthi, C. Subramanian, P. Ramasamy, Mater. Sci. Eng. B 57, 127 (1999)CrossRefGoogle Scholar
  42. 42.
    J. Tauc, A. Menth, J. Non-Cryst. Solids 8, 569 (1972)ADSCrossRefGoogle Scholar
  43. 43.
    K. Dakhsi, B. Hartiti, S. Elfarrass, H. Tchognia, M.E. Touhami, P. Thevenin, Mol. Cryst. Liq. Cryst. 627, 133 (2016)CrossRefGoogle Scholar
  44. 44.
    M.H. Yoon, S.H. Lee, H.L. Park, H.K. Kim, M.S. Jang, J. Mater. Sci. Lett. 21, 1703 (2002)CrossRefGoogle Scholar
  45. 45.
    S. Yoshioka, F. Oba, R. Huang, I. Tanaka, T. Mizoguchi, T. Yamamoto, J. Appl. Phys. 103, 014309 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    P. Banerjee, W.-J. Lee, K.-R. Bae, S.B. Lee, G.W. Rubloff, J. Appl. Phys. 108, 043504 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    J.-Q. Wen, J.-M. Zhang, Z.-Q. Li, Opt. Int. J. Light Electron. Opt. 156, 297 (2018)CrossRefGoogle Scholar
  48. 48.
    S.H. Deng, M.Y. Duan, M. Xu, L. He, Phys. B Condens. Matter. 406, 2314 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    H. Ahmoum, M. Boughrara, M.S. Su’ait, M. Kerouad, Chem. Phys. Lett. 719, 45 (2019)ADSCrossRefGoogle Scholar
  50. 50.
    H. Ahmoum, M. Boughrara, M.S. Su’ait, S. Chopra, M. Kerouad, Phys. B Condens. Matter. 560, 28 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Physics of Condensed Matter (LPMC), Department of Physics, Faculty of SciencesIbn Tofail UniversityKenitraMorocco
  2. 2.Materials Physics and Systems Modeling Laboratory (LP2MS), Unit Associated At CNRST-URAC:08, Faculty of SciencesMoulay Ismail UniversityMeknesMorocco
  3. 3.Department of Physics, Amity Institute of Applied SciencesAmity UniversityNoidaIndia
  4. 4.Applied Chemistry and Environment, Faculty of Science and TechnologyHassan 1st UniversitySettatMorocco

Personalised recommendations