Advertisement

Applied Physics A

, 125:656 | Cite as

Frequency and temperature dependent dielectric properties in the lead free Ba0.75Ce0.033Sr0.2Ti0.96Sn0.04O3 ceramics

  • I. Zeydi
  • A. Zaidi
  • J.DhahriEmail author
  • M. A. Zaidi
  • M. Elhabradi
Article
  • 40 Downloads

Abstract

Ba0.75Ce0.033Sr0.2Ti0.96Sn0.04O3 ceramic was prepared by solid-state route. X-ray diffraction (XRD) analysis of the compound shows a tetragonal phase with the space group of P4mm at room temperature. The imaginary part of the impedance (Z″) as a function of frequency reveals the presence of relaxation phenomena. Nyquist plots of impedance exhibit a semicircle arcs at different temperatures and an electrical equivalent circuit of (R1//CPE1) − (R2//CPE2) has been purposed to describe the impedance results. The imaginary part of the complex permittivity (\(\varepsilon^{\prime\prime}\)) and the dielectric factor (tan δ) show a drastic decrease with the frequency. The decrease can be interpreted by the polarization type of Maxwell–Wagner. On the basis of the universal power law of Jonscher, the conductivity can be written as:\(\sigma = \sigma_{{{\text{DC}}}} + A\omega^{n}\). At low frequencies, the conduction mechanism obeys to SPH model and to the CBH model at high frequencies.

Notes

References

  1. 1.
    P. Kantha, K. Pengpat, P. Jarupoom, U. Intatha, G. Rujijanagul, T. Tunkasiri, Phase formation and electrical properties of BNLT–BZT lead-free piezoelectric ceramic system. Curr. Appl. Phys. 9, 460–466 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    D. Lin, K.W. Kwok, H.L.W. Chan, Effects of MnO2 on the microstructure and electrical properties of 0.94(K0.5Na0.5)NbO3–0.06Ba(Zr0.05Ti0.95)O3 lead-free ceramics. Mater. Chem. Phys. 109, 455–458 (2008)Google Scholar
  3. 3.
    H. Maiwa, Dielectric and electromechanical properties of Ba (ZrxTi1−x)O3 (x = 0.1 and 0.2) ceramics prepared by spark plasma sintering. Jpn. J. Appl. Phys. 46, 7013 (2007)Google Scholar
  4. 4.
    Z. Chen, J. Hu, Piezoelectric and dielectric properties of (Bi0.5Na0.5)0.94Ba0.06TiO3–Ba (Zr0.04Ti0.96)O3 lead-free piezoelectric ceramics. Ceram. Int. 35, 111–115 (2009)Google Scholar
  5. 5.
    R.H. Upadhyay, A.P. Argekar, R.R. Deshmukh, Characterization, dielectric and electrical behaviour of BaTiO3 nanoparticles prepared via titanium(IV) triethanolaminato isopropoxide and hydrated barium hydroxide. Bull. Mater. Sci. 37(3), 481–489 (2014)CrossRefGoogle Scholar
  6. 6.
    Y. Wei, Y. Song, X. Deng, B. Han, X. Zhang, Y. Shen, Y. Lin, Dielectric and ferroelectric properties of BaTiO3 nanofibers prepared via electrospinning. J. Mater. Sci. Technol. 30(8), 743–747 (2014)CrossRefGoogle Scholar
  7. 7.
    P.K. Patel, J. Rani, N. Adhlakha, H. Singh, K.L. Yadav, Enhanced dielectric properties of doped barium titanate ceramics. J. Phys. Chem. Solids 74, 545–549 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    S. Devi, A.K. Jha, Structural, dielectric and ferroelectric properties of tungsten substituted barium titanate ceramics. Asian J. Chem. 21(10), 117–124 (2009)Google Scholar
  9. 9.
    H. Kishi, Y. Mizuno, H. Chazono, Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn. J. Appl. Phys. 42, 1–15 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    A. Hussain, J.U. Rahman, A. Zaman, R.A. Malik, J.S. Kim, Field-induced strain and polarization response in lead-free Bi1/2(Na0.80K0.20)1/2TiO3–SrZrO3 ceramics. Mater. Chem. Phys. 143, 1282–1288 (2014)Google Scholar
  11. 11.
    J.-H. Jeon, Effect of SrTiO3 concentration and sintering temperature on microstructure and dielectric constant of Ba1− xSrxTiO3. J. Eur. Ceram. Soc. 24, 1045–1048 (2004)CrossRefGoogle Scholar
  12. 12.
    R. Farhi, M. El Marssi, A. Simon, J. Ravez, A Raman and dielectric study of ferroelectric ceramics. Eur. Phys. J. B 9, 599–604 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    Q. Sun, Q. Gu, K. Zhu, R. Jin, J. Liu, J. Wang, J. Qiu, Crystalline structure, defect chemistry and room temperature colossal permittivity of Nd-doped barium titanate. Sci. Rep. 7, 42274 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    K. Maeda, Rhodium-doped barium titanate perovskite as a stable p-type semiconductor photocatalyst for hydrogen evolution under visible light. ACS Appl. Mater. Interfaces 6, 2167–2173 (2014)CrossRefGoogle Scholar
  15. 15.
    M.K. Mahata, K. Kumar, V.K. Rai, Structural and optical properties of Er3+/Yb3+ doped barium titanate phosphor prepared by co-precipitation method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 124, 285–291 (2014)Google Scholar
  16. 16.
    H. Abdelkefi, H. Khemakhem, G. Velu, J.C. Carru, R. Vonder Muhll, Dielectric properties and ferroelectric phase transitions in BaxSr1−xTiO3 solid solution. J. Alloys. Compd. 399, 1–6 (2005)Google Scholar
  17. 17.
    L. Zhou, P.M. Vilarinho, J.L. Baptista, Dependence of the structural and dielectric properties of Ba1-xSrxTiO3 ceramic solid solutions on raw material processing. J. Eur. Ceram. Soc. 19, 2015 (1999)CrossRefGoogle Scholar
  18. 18.
    V.V. Lemanov, E.P. Smimova, P.P. Syrnikov, E.A. Tarakanov, Phase transitions and glasslike behavior in Sr1−xBaxTiO3. Phys. Rev. B 54, 3151–3157 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    S. Yasmin, S. Choudhury, M.A. Hakim, A.H. Bhuiyan, M.J. Rahman, J. Ceram. Process. Res. 12, 387–391 (2011)Google Scholar
  20. 20.
    J.H. Hwang, Y.H. Han, J. Am. Ceram. Soc. 84, 1750–1754 (2001)CrossRefGoogle Scholar
  21. 21.
    M.J. Rahman, S. Choudhury, A.H. Bhuiyan, S.N. Rahman, A.H. Khan, J. Bangladesh Acad. Sci. 31, 137–141 (2007)Google Scholar
  22. 22.
    L.X. Fu, L.Y. Zhang, X. Yao, Structural and dielectric properties of Ba0.80Sr0.20Ti(1x)SnxO3 ceramics. J. Electroceram. 21, 561–564 (2008)Google Scholar
  23. 23.
    X. Wang, B. Li, J. Solid State Commun. 149, 537 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    R. Brahem, H. Rahmouni, N. Farhat, J. Dhahri, K. Khirouni, L.C. Costa, Electrical properties of Sn-doped Ba0.75Sr0.25Ti0.95O3 perovskite. Ceram. Int. 40, 9355–9360 (2014)CrossRefGoogle Scholar
  25. 25.
    F.I.H. Rhouma, A. Dhahri, J. Dhahri, M.A. Valente, Appl. Phys. A 108, 593–600 (2012)CrossRefGoogle Scholar
  26. 26.
    S. Chihaoui, L. Seveyrat, V. Perrin, I. Kallel, L. Lebrun, H. Khemakhem, Ceram. Int. 43(1), 427–432 (2017)Google Scholar
  27. 27.
    H.M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst. 22, 151–152 (1967)CrossRefGoogle Scholar
  28. 28.
    A. Taylor, X-ray Metallography (Wiley, New York, 1961)Google Scholar
  29. 29.
    P. Ganguly, A.K. Jha, K.L. Deori, Complex impedance studies of tungsten–bronze structured Ba5SmTi3Nb7O30 ferroelectric ceramics. Solid State Commun. 146, 472–477 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    S. Upadhyay, High temperature impedance spectroscopy of barium stannate, BaSnO3. Bull. Mater. Sci. 36, 1019–1036 (2013)CrossRefGoogle Scholar
  31. 31.
    G. Anand, P. Kuchhal, P. Srah, The structure and complex impedance spectroscopy of Sr1−x CaxBi4Ti4O15 (x = 0, 0.2, 0.4, 0.6, 0.8) ceramics. Procedia Mater. Sci. 10, 533–541 (2015)Google Scholar
  32. 32.
    S. Dash, R.N.P. Choudhary, A. Kumar, Impedance spectroscopy and conduction mechanism of multiferroic (Bi0.6K0.4)(Fe0.6Nb0.4)O3. J. Phys. Chem. Solids 75, 1376–1382 (2014)Google Scholar
  33. 33.
    H. Singh, A. Kumar, K.L. Yadav, Structural, dielectric, magnetic, magnetodielectric and impedance spectroscopic studies of multiferroic BiFeO3–BaTiO3 ceramics. Mater. Sci. Eng. B 176, 540–547 (2011)Google Scholar
  34. 34.
    A.K. Jonsher, The universal dynamic response. Nature 267(5613), 673–679 (1977)ADSCrossRefGoogle Scholar
  35. 35.
    S. Chatterjee, P.K. Mahapatra, R.N.P. Choudhary, A.K. Thakur, Complex impedance studies of sodium pyrotungstate—Na2W2O7. Phys. Status Solidi (a) 201, 588–595 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    B. Tiwari, R.N.P. Choudhary, Complex impedance spectroscopic analysis of Mn-modified Pb(Zr0.65Ti0.35)O3 electroceramics. J. Phys. Chem. Solids 69(11), 2852–2857 (2008)Google Scholar
  37. 37.
    R.S. Yadav, I. Kuřitka, J. Vilcakova, P. Urbánek, M. Machovsky, M. Masař, M. Holek, Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method. J. Phys. Chem. Solids. 110, 87–99 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    A. Chen, Y. Zhi, L.E. Cross, Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3. Phys. Rev. B: Condens. Matter Mater. Phys. 62, 228–236 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    U. Intatha, S. Eitssayeam, J. Wang, T. Tunkasiri, Impedance study of giant dielectric permittivity in BaFe0.5Nb0.5O3 perovskite ceramic. Curr. Appl. Phys. 10, 21–25 (2010)Google Scholar
  40. 40.
    H. Rahmouni, A. Benali, B. Cherif, E. Dhahri, M. Boukhobza, K. Khirouni, M. Sajieddine, Structural and electrical properties of Zn1-xNixFe2O4 ferrite. Phys. B Condens. Matter 466–467, 31–37 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    A. Dhahri, E. Dhahri, E.K. Hlil, Electrical conductivity and dielectric behaviour of nanocrystalline La0.6Gd0.1Sr0.3Mn0.75Si0.25O3. RSC Adv. 8, 9103 (2018)Google Scholar
  42. 42.
    M. Nadeem, M.J. Akhtar, A.Y. Khan, Effects of low frequency near metal-insulator transition temperatures on polycrystalline La0.65Ca0.35Mn1−yFeyO3 (where y = 0.05–0.10) ceramic oxides, Solid State Commun. 134, 431–436 (2005)Google Scholar
  43. 43.
    E.J. Abram, D.C. Sinclair, A.R. West, A strategy for analysis and modelling of impedance spectroscopy data of electroceramics: doped lanthanum gallate. J. Electroceramics 10, 165–177 (2003)CrossRefGoogle Scholar
  44. 44.
    A. Omri, M. Bejar, E. Dhahri, M. Es-Souni, M.A. Valente, M.P.F. Graça, L.C. Costa, Electrical conductivity and dielectric analysis of La0.75(Ca,Sr)0.25Mn0.85Ga0.15O3 perovskite compound. J. Alloy. Compd. 536, 173–178 (2012)Google Scholar
  45. 45.
    S. Sahoo, U. Dash, S.K.S. Parashar, S.M. Ali, Frequency and temperature dependent electrical characteristics of CaTiO3 nano-ceramic prepared by high-energy ball milling. J. Adv. Ceram. 2, 291–300 (2013)CrossRefGoogle Scholar
  46. 46.
    J. Hazarika, A. Kumar, Electric modulus based relaxation dynamics and ac conductivity scaling of polypyrrole nanotubes. Synth. Met. 198, 239–247 (2014)CrossRefGoogle Scholar
  47. 47.
    C. Behera, R.N.P. Choudhary, P.R. Das, Structural and electrical properties of La-modified BiFeO3–BaTiO3 composites. J. Mater. Sci. Mater. Electron. 25, 2086 (2014)CrossRefGoogle Scholar
  48. 48.
    Q.Q. Ke, X.J. Lou, Y. Wang, J. Wang, Oxygen-vacancy-related relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3 ferroelectric thin films. Phys. Rev. B 82, 24102 (2010)sGoogle Scholar
  49. 49.
    D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, Effect of Mn substitution on electrical and magnetic properties of Bi0.9La0.1FeO3. J. Appl. Phys. 106, 24102 (2009)Google Scholar
  50. 50.
    N.F. Mott, E.A. Davis, Electronic Process in Non Crystalline Materials (Clarendon Press, Oxford, 1979)Google Scholar
  51. 51.
    A. von Hippel, Dielectrics and Waves (Wiley, New York, 1954)Google Scholar
  52. 52.
    C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121.L (1951)ADSCrossRefGoogle Scholar
  53. 53.
    A.K. Chauhan, K. Shukla, K. Sreenivas, Dielectric and magnetic properties of Nickel ferrite ceramics using crystalline powders derived from DL alanine fuel in sol–gel auto-combustion. Ceram. Int. 41, 8341–8351 (2015)CrossRefGoogle Scholar
  54. 54.
    A.K. Konsher, Universal Relaxation Law (Chelsea Dielectric Press, London, 1996)Google Scholar
  55. 55.
    S. Nasri, A. Oueslati, I. Chaabane, M. Gargouri, AC conductivity, electric modulus analysis and electrical conduction mechanism of RbFeP2O7 ceramic compound. Ceram. Int. 42, 14041–14048 (2016)CrossRefGoogle Scholar
  56. 56.
    T.M. Meaz, S. Attia, A.M.A. El Ata, Effect of tetravalent titanium ions substitution on the dielectric properties of Co–Zn ferrites. J. Magn. Magn. Mater. 257, 296–305 (2003)ADSCrossRefGoogle Scholar
  57. 57.
    A. Ghosh, Ac conduction in iron bismuthate glassy semiconductors. Phys. Rev. B 42, 1388 (1990)ADSCrossRefGoogle Scholar
  58. 58.
    I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 19, 41 (1969)ADSCrossRefGoogle Scholar
  59. 59.
    S.R. Elliot, A theory of ac conduction in chalcogenide glasses. Philos. Magn. 36, 1291–1304 (1977)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • I. Zeydi
    • 1
  • A. Zaidi
    • 2
  • J.Dhahri
    • 2
    Email author
  • M. A. Zaidi
    • 1
    • 3
  • M. Elhabradi
    • 3
  1. 1.Laboratoire de Micro-Optoelectronique Et Nanostructure (LMON), Faculté Des Sciences de MonastirUniversité de MonastirMonastirTunisie
  2. 2.Laboratoire de La matière condensée Et Des Nanosciences (LMCN), Faculté Des Sciences de MonastirUniversité de MonastirMonastirTunisie
  3. 3.College of Science of ZulfiMajmaah University Saudi ArabiaMajmaahSaudi Arabia

Personalised recommendations