Advertisement

Applied Physics A

, 125:640 | Cite as

The effective contribution of PbO on nuclear shielding properties of xPbO-(100 − x)P2O5 glass system: a broad range investigation

  • Shams A. M. Issa
  • H. O. TekinEmail author
  • T. T. Erguzel
  • G. Susoy
Article

Abstract

The radiation shielding properties for glass system with the composition of xPbO-(100 − x)P2O5 (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 mol%) were studied. For that purpose, 3 × 3 inch NaI(Tl) scintillation detector was designed to detect the photons using simulation code of MCNPX program. Consequently, the mass attenuation coefficients (μ/ρ) were calculated. The predestined (μ/ρ) values using MCNPX code for twelve glass samples were checked together with the XMuDat and XCOM software outcomes. The half value layer (HVL), proton mass stopping power (MSP), exposure buildup factor (EBF) and proton projected range were estimated in a broad energy zone of 0.015–15 MeV. In addition, the neutron radiation shielding parameters i.e. mass removal cross section for neutron (∑R), Coherent neutron scattering length (bco), incoherent neutron scattering length (binc), coherent neutron scattering cross section (σco), incoherent neutron scattering cross section (σinc), total neutron scattering cross section (σtot) and absorption neutron scattering cross section (σabs) of glasses were computed. The addition of PbO has an impact on the radiation protection properties of phosphate glass systems improve the radiation shielding properties of phosphate glass samples, where (μ/ρ), ∑R and effective atomic number (Zeff) values increase when the chemical composition of lead oxide increase while HVL, EBF MSP and projected range values decrease. That underlines our research in that way that it appears that the addition of lead oxide has an impact on the radiation protection properties of phosphate glass systems.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

339_2019_2941_MOESM1_ESM.docx (52 kb)
Supplementary file1 (DOCX 51 kb)

References

  1. 1.
    N. Ekinci, E. Kavaz, Y. Özdemir, A study of the energy absorption and exposure buildup factors of some anti-inflammatory drugs. Appl. Radiat. Isot. 90, 265–273 (2014).  https://doi.org/10.1016/j.apradiso.2014.05.003 CrossRefGoogle Scholar
  2. 2.
    A. Kumar, Gamma ray shielding properties of PbO-Li2O-B2O3 glasses. Radiat. Phys. Chem. 136, 50–53 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    B. Pomaro, A review on radiation damage in concrete for nuclear facilities: from experiments to modeling. Model. Simul. Eng. 2016, 1–10 (2016).  https://doi.org/10.1155/2016/4165746 CrossRefGoogle Scholar
  4. 4.
    C. Bootjomchai, J. Laopaiboon, C. Yenchai, R. Laopaiboon, Gamma-ray shielding and structural properties of barium-bismuth-borosilicate glasses. Radiat. Phys. Chem. 81, 785–790 (2012).  https://doi.org/10.1016/j.radphyschem.2012.01.049 ADSCrossRefGoogle Scholar
  5. 5.
    A.A.A. Darwish, S.A.M. Issa, M.M. El-Nahass, Effect of gamma irradiation on structural, electrical and optical properties of nanostructure thin films of nickel phthalocyanine. Synth. Methods 215, 200–206 (2016).  https://doi.org/10.1016/j.synthmet.2016.03.002 CrossRefGoogle Scholar
  6. 6.
    B.O. Elbashir, M.G. Dong, M.I. Sayyed, S.A.M. Issa, K.A. Matori, M.H.M. Zaid, Comparison of Monte Carlo simulation of gamma ray attenuation coefficients of amino acids with XCOM program and experimental data. Results Phys. 9, 6–11 (2018).  https://doi.org/10.1016/j.rinp.2018.01.075 ADSCrossRefGoogle Scholar
  7. 7.
    S. Issa, M. Sayyed, M. Kurudirek, Investigation of Gamma Radiation Shielding Properties of Some Zinc Tellurite Glasses. J. Phys. Sci. 27, 97–119 (2016).  https://doi.org/10.21315/jps2016.27.3.7 CrossRefGoogle Scholar
  8. 8.
    S.A.M. Issa, A.A.A. Darwish, M.M. El-Nahass, The evolution of gamma-rays sensing properties of pure and doped phthalocyanine. Prog. Nucl. Energy 100, 276–282 (2017).  https://doi.org/10.1016/j.pnucene.2017.06.016 CrossRefGoogle Scholar
  9. 9.
    S.A.M. Issa, T.A. Hamdalla, A.A.A. Darwish, Effect of ErCl3 in gamma and neutron parameters for different concentration of ErCl3-SiO2 (EDFA) for the signal protection from nuclear radiation. J. Alloys Compd. 698, 234–240 (2017)CrossRefGoogle Scholar
  10. 10.
    S.A.M. Issa, Y.B. Saddeek, H.O. Tekin, M.I. Sayyed, K. Saber Shaaban, Investigations of radiation shielding using Monte Carlo method and elastic properties of PbO-SiO2-B2O3-Na2O glasses. Curr. Appl. Phys. 18, 717–727 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    S.A.M. Issa, M.I. Sayyed, M.H.M. Zaid, K.A. Matori, Photon parameters for gamma-rays sensing properties of some oxide of lanthanides. Results Phys. 9, 206–210 (2018).  https://doi.org/10.1016/j.rinp.2018.02.039 ADSCrossRefGoogle Scholar
  12. 12.
    S. Kaewjaeng, J. Kaewkhao, P. Limsuwan, U. Maghanemi, Effect of BaO on optical, physical and radiation shielding properties of SiO2-B2O3-Al2O3-CaO-Na2O glasses system. Procedia Eng. 32, 1080–1086 (2012).  https://doi.org/10.1016/j.proeng.2012.02.058 CrossRefGoogle Scholar
  13. 13.
    R. Mirji, B. Lobo, Computation of the mass attenuation coefficient of polymeric materials at specific gamma photon energies. Phys. Chem. Radiat. 1, 1 (2017).  https://doi.org/10.1016/j.radphyschem.2017.03.001 CrossRefGoogle Scholar
  14. 14.
    M.I. Sayyed, S.A.M. Issa, S.H. Auda, Assessment of radio-protective properties of some anti-inflammatory drugs. Prog. Nucl. Energy 100, 297–308 (2017).  https://doi.org/10.1016/j.pnucene.2017.07.003 CrossRefGoogle Scholar
  15. 15.
    K.J. Singh, S. Kaur, R.S. Kaundal, Comparative study of gamma ray shielding and some properties of PbO–SiO2–Al2O3 and Bi2O3–SiO2–Al2O3 glass systems. Radiat. Phys. Chem. 96, 153–157 (2014).  https://doi.org/10.1016/j.radphyschem.2013.09.015 ADSCrossRefGoogle Scholar
  16. 16.
    A.E. Ersundu, M. Büyükyıldız, M. Çelikbilek Ersundu, E. Şakar, M. Kurudirek, The heavy metal oxide glasses within the WO3–MoO3–TeO2 system to investigate the shielding properties of radiation applications. Prog. Nucl. Energy 104, 280–287 (2018).  https://doi.org/10.1016/j.pnucene.2017.10.008 CrossRefGoogle Scholar
  17. 17.
    S.A.M. Issa, H.O. Tekin, R. Elsaman, O. Kilicoglu, Y.B. Saddeek, M.I. Sayyed, Radiation shielding and mechanical properties of Al2O3–Na2O–B2O3−Bi2O3 glasses using MCNPX Monte Carlo code. Mater. Chem. Phys. 223, 209–219 (2019).  https://doi.org/10.1016/j.matchemphys.2018.10.064 CrossRefGoogle Scholar
  18. 18.
    P. Kaur, K.J. Singh, S. Thakur, P. Singh, B.S. Bajwa, Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 206, 367–377 (2019).  https://doi.org/10.1016/j.saa.2018.08.038 ADSCrossRefGoogle Scholar
  19. 19.
    M. Kurudirek, N. Chutithanapanon, R. Laopaiboon, C. Yenchai, C. Bootjomchai, Effect of Bi2O3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass. J. Alloys Compd. 745, 355–364 (2018).  https://doi.org/10.1016/j.jallcom.2018.02.158 CrossRefGoogle Scholar
  20. 20.
    H.O. Tekin, M.I. Sayyed, S.A.M. Issa, Gamma radiation shielding properties of the hematite-serpentine concrete blended with WO3 and Bi2O3 micro and nano particles using MCNPX code. Radiat. Phys. Chem. 150, 95–100 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    E.-S.A. Waly, G.S. Al-Qous, M.A. Bourham, Shielding properties of glasses with different heavy elements additives for radiation shielding in the energy range 15–300 keV. Radiat. Phys. Chem. 150, 120–124 (2018).  https://doi.org/10.1016/j.radphyschem.2018.04.029 ADSCrossRefGoogle Scholar
  22. 22.
    S. Yasmin, B.S. Barua, M.U. Khandaker, F.-U.-Z. Chowdhury, M.A. Rashid, D.A. Bradley, M.A. Olatunji, M. Kamal, Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in Bangladeshi dwellings. Results Phys. 9, 541–549 (2018).  https://doi.org/10.1016/j.rinp.2018.02.075 ADSCrossRefGoogle Scholar
  23. 23.
    K.A. Matori, M.H.M. Zaid, S.H.A. Aziz, H.M. Kamari, Z.A. Wahab, Study of the elastic properties of ***(PbO)x(P2O5)1 x lead phosphate glass using an ultrasonic technique. J. Non. Cryst. Solids 361, 78–81 (2013).  https://doi.org/10.1016/j.jnoncrysol.2012.10.022 ADSCrossRefGoogle Scholar
  24. 24.
    R. Praveena, V. Venkatramu, P. Babu, C.K. Jayasankar, Fluorescence spectroscopy of Sm3+ ions in P2O5–PbO–Nb2O5 glasses. Phys. B Condens. Matter 403, 3527–3534 (2008).  https://doi.org/10.1016/j.physb.2008.05.027 ADSCrossRefGoogle Scholar
  25. 25.
    M.I. Ojovan, W.E. Lee, Glassy wasteforms for nuclear waste immobilization. Metall. Mater. Trans. A 42, 837–851 (2011).  https://doi.org/10.1007/s11661-010-0525-7 CrossRefGoogle Scholar
  26. 26.
    M.I. Ojovan, W.E. Lee, Connectivity and glass transition in disordered oxide systems. J. Non Cryst. Solids 356, 2534–2540 (2010).  https://doi.org/10.1016/j.jnoncrysol.2010.05.012 ADSCrossRefGoogle Scholar
  27. 27.
    H.A.A. Sidek, R. El-Mallawany, K.A. Matori, M.K. Halimah, Effect of PbO on the elastic behavior of ZnO–P2O5 glass systems. Results Phys. 6, 449–455 (2016).  https://doi.org/10.1016/j.rinp.2016.07.014 ADSCrossRefGoogle Scholar
  28. 28.
    L.M. Sharaf El-Deen, M.S. Al Salhi, M.M. Elkholy, Spectral properties of PbO–P2O5 glasses. J. Non Cryst. Solids 354, 3762–3766 (2008).  https://doi.org/10.1016/j.jnoncrysol.2008.03.032 ADSCrossRefGoogle Scholar
  29. 29.
    P. Shih, Thermal, chemical and structural characteristics of erbium-doped sodium phosphate glasses. Mater. Chem. Phys. 84, 151–156 (2004).  https://doi.org/10.1016/j.matchemphys.2003.11.016 CrossRefGoogle Scholar
  30. 30.
    S.A.M. Issa, A. Kumar, M.I. Sayyed, M.G. Dong, Y. Elmahroug, Mechanical and gamma-ray shielding properties of TeO2–ZnO–NiO glasses. Mater. Chem. Phys. 212, 12–20 (2018).  https://doi.org/10.1016/j.matchemphys.2018.01.058 CrossRefGoogle Scholar
  31. 31.
    L. Gerward, N. Guilbert, K. Bjorn Jensen, H. Levring, X-ray absorption in matter. Re***engineering XCOM. Radiat. Phys. Chem. 60, 23–24 (2001).  https://doi.org/10.1016/S0969-806X(00)00324-8 ADSCrossRefGoogle Scholar
  32. 32.
    M.I. Sayyed, S.A.M. Issa, M. Büyükyıldız, M. Dong, Determination of nuclear radiation shielding properties of some tellurite glasses using MCNP5 code. Radiat. Phys. Chem. 150, 1–8 (2018).  https://doi.org/10.1016/j.radphyschem.2018.04.014 ADSCrossRefGoogle Scholar
  33. 33.
    M.I. Sayyed, S.A.M. Issa, H.O. Tekin, Y.B. Saddeek, Comparative study of gamma-ray shielding and elastic properties of BaO–Bi2O3–B2O3 and ZnO–Bi2O3–B2O3 glass systems. Mater. Chem. Phys. (2018).  https://doi.org/10.1016/j.matchemphys.2018.06.034 CrossRefGoogle Scholar
  34. 34.
    M.M. Hosamani, N.M. Badiger, Determination of effective atomic number of composite materials using backscattered gamma photons—a novel method. Chem. Phys. Lett. 695, 94–98 (2018).  https://doi.org/10.1016/j.cplett.2018.02.012 ADSCrossRefGoogle Scholar
  35. 35.
    S.A.M. Issa, A.M.A. Mostafa, M. Dong, V.P. Singh, H.O. Tekin, Determining the gamma-ray parameters for BaO–ZnO–B2O3 glasses using MCNP5 code: a comparison study. Radiat. Eff. Defects Solids 173, 510–525 (2018).  https://doi.org/10.1080/10420150.2018.1484743 ADSCrossRefGoogle Scholar
  36. 36.
    S.A.M. Issa, A.M.A. Mostafa, T.A. Hanafy, M. Dong, X. Xue, Comparison study of photon attenuation characteristics of Poly vinyl alcohol (PVA) doped with Pb(NO3)2 by MCNP5 code, XCOM and experimental results. Prog. Nucl. Energy 111, 15–23 (2019).  https://doi.org/10.1016/j.pnucene.2018.10.018 CrossRefGoogle Scholar
  37. 37.
    S.A.M. Issa, M.I. Sayyed, M. Kurudirek, Study of gamma radiation shielding properties of ZnO–TeO2 glasses. Bull. Mater. Sci. 40, 841–857 (2017)CrossRefGoogle Scholar
  38. 38.
    A.B. Chilton, J.K. Shultis, R.E. Faw, Principles of Radiation Shielding (Prentice Hall, Englewood Cliffs, 1984)Google Scholar
  39. 39.
    M.F. Kaplan, Concrete radiation shielding (Wiley, New York, 1989)Google Scholar
  40. 40.
    H.C. Manjunatha, L. Seenappa, B.M. Chandrika, K.N. Sridhar, C. Hanumantharayappa, Gamma, X-ray and neutron shielding parameters for the Al-based glassy alloys. Appl. Radiat. Isot. 139, 187–194 (2018).  https://doi.org/10.1016/j.apradiso.2018.05.014 CrossRefGoogle Scholar
  41. 41.
    S.A.M. Issa, M. Ahmad, H.O. Tekin, Y.B. Saddeek, M.I. Sayyed, Effect of Bi2O3 content on mechanical and nuclear radiation shielding properties of Bi2O3–MoO3–B2O3–SiO2–Na2O–Fe2O3 glass system. Results Phys. 13, 102165 (2019).  https://doi.org/10.1016/j.rinp.2019.102165 CrossRefGoogle Scholar
  42. 42.
    S.A.M. Issa, Y.B. Saddeek, M.I. Sayyed, H.O. Tekin, O. Kilicoglu, Radiation shielding features using MCNPX code and mechanical properties of the PbO Na2O B2O3CaO Al2O3SiO2 glass systems. Compos. Part B Eng. 167, 231–240 (2019).  https://doi.org/10.1016/j.compositesb.2018.12.029 CrossRefGoogle Scholar
  43. 43.
    I.S. Mahmoud, S.A.M. Issa, Y.B. Saddeek, H.O. Tekin, O. Kilicoglu, T. Alharbi, M.I. Sayyed, T.T. Erguzel, R. Elsaman, Gamma, neutron shielding and mechanical parameters for lead vanadate glasses. Int. Ceram. 1, 1 (2019).  https://doi.org/10.1016/j.ceramint.2019.04.105 CrossRefGoogle Scholar
  44. 44.
    M.K. Halimah, A. Azuraida, M. Ishak, L. Hasnimulyati, Influence of bismuth oxide on gamma radiation shielding properties of boro-tellurite glass. J. Non Cryst. Solids 512, 140–147 (2019).  https://doi.org/10.1016/j.jnoncrysol.2019.03.004 ADSCrossRefGoogle Scholar
  45. 45.
    K. Bagheri, S.M. Razavi, S.J. Ahmadi, M. Kosari, H. Abolghasemi, Thermal resistance, tensile properties, and gamma radiation shielding performance of unsaturated polyester/nanoclay/PbO composites. Radiat. Phys. Chem. 146, 5–10 (2018).  https://doi.org/10.1016/j.radphyschem.2017.12.024 ADSCrossRefGoogle Scholar
  46. 46.
    E. Salama, A. Maher, G.M. Youssef, Gamma radiation and neutron shielding properties of transparent alkali borosilicate glass containing lead. J. Phys. Chem. Solids 131, 139–147 (2019).  https://doi.org/10.1016/j.jpcs.2019.04.002 ADSCrossRefGoogle Scholar
  47. 47.
    R. Singh, A. Singh, D. Singh, M. Tyagi, Studies of photon interaction and shielding parameters of lead alumino-borophosphate glass system. Radiat. Phys. Chem. 161, 60–65 (2019).  https://doi.org/10.1016/j.radphyschem.2019.04.013 CrossRefGoogle Scholar
  48. 48.
    I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997).  https://doi.org/10.1016/S0306-4549(97)00003-0 CrossRefGoogle Scholar
  49. 49.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceUniversity of TabukTabukSaudi Arabia
  2. 2.Physics Department, Faculty of ScienceAl-Azhar UniversityAssiutEgypt
  3. 3.Radiotherapy DepartmentVocational School of Health ServicesUskudar UniversityIstanbulTurkey
  4. 4.Medical Radiation Research Center (USMERA)Uskudar UniversityIstanbulTurkey
  5. 5.Department of Software Engineering, Faculty of Engineering and Natural SciencesUskudar UniversityIstanbulTurkey
  6. 6.Department of Physics, Faculty of ScienceIstanbul UniversityIstanbulTurkey

Personalised recommendations