Advertisement

Applied Physics A

, 125:634 | Cite as

Formation, geometric properties, and surface activities of nSi clusters (n = 1 − 4) doped graphene as metal-free catalyst

  • Weiguang Chen
  • Gao Zhao
  • Da Teng
  • Aizhong Qiu
  • Yanan TangEmail author
  • Xianqi DaiEmail author
Article
  • 33 Downloads

Abstract

The formation processes, electronic, and catalytic properties of nSi (n = 1 − 4) atom-doped divacancy graphene (nSi-graphene) are discussed using density functional theory calculations. First, the formation mechanisms of nSi-graphene sheets are investigated in detail. According to the formation energies values, it is found that the tetrahedral 4Si cluster-anchored graphene has the least energy as compared with that of others. Second, the adsorption behaviors and electronic structures of adsorbed species on the 1Si-graphene and 4Si-graphene sheets are comparably analyzed. The adsorption of O2 molecule is more stable than that of the CO molecule; thus, the possible CO oxidation reactions on different nSi-graphene surfaces are investigated through Eley–Rideal. In the complete CO oxidation reactions, the formation process of CO3 complex on the 1Si-graphene sheet is the rate-controlling step, while the interaction between CO3 and CO on the 4Si-graphene has a relatively large energy barrier. This result illustrates that the different numbers of Si atoms can regulate the surface curvature and activities of graphene sheets, which provides a theoretical reference for designing the graphene-based metal-free catalyst in energy-related devices.

Graphic abstract

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 61674053, 11904328 and 61904161), the Natural Science Foundation of Henan Province (Grant no. 162300410325), Program for Science & Technology Innovation Talents in Universities of Henan Province (Grant no. 18HASTIT030), the Key Scientific Research Project of Henan College (20A140030) and the key Young Teachers of Henan Province (Grant no. 2017GGJS179). Aid program for Science and Technology Innovative Research Team and Open Research Fund of Zhengzhou Normal University.

Supplementary material

339_2019_2940_MOESM1_ESM.docx (294 kb)
Supplementary file1 (DOCX 294 kb)

References

  1. 1.
    A. Geim, K. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)ADSGoogle Scholar
  2. 2.
    B.F. Machado, P. Serp, Graphene-based materials for catalysis. Catal. Sci. Technol. 2, 54–75 (2012)Google Scholar
  3. 3.
    C.T. Campbell, Catalyst-support interactions: electronic perturbations. Nat. Chem. 4, 597–598 (2012)Google Scholar
  4. 4.
    J.A. Rogers, Electronic materials: making graphene for macroelectronics. Nat. Nanotechnol. 3, 254–255 (2008)ADSGoogle Scholar
  5. 5.
    I. Jung, M. Pelton, R. Piner, D.A. Dikin, S. Stankovich, S. Watcharotone, M. Hausner, R.S. Ruoff, Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 7, 3569–3575 (2007)ADSGoogle Scholar
  6. 6.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)ADSGoogle Scholar
  7. 7.
    X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. Piner, L. Colombo, R. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359–4363 (2009)ADSGoogle Scholar
  8. 8.
    G. Eda, M. Chhowalla, Graphene-based composite thin films for electronics. Nano Lett. 9, 814–818 (2009)ADSGoogle Scholar
  9. 9.
    A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2008)ADSGoogle Scholar
  10. 10.
    M. Pumera, Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4, 668–674 (2011)Google Scholar
  11. 11.
    C. Huang, C. Li, G. Shi, Graphene based catalysts. Energy Environ. Sci. 5, 8848–8868 (2012)Google Scholar
  12. 12.
    X. Miao, S. Tongay, M.K. Petterson, K. Berke, A.G. Rinzler, B.R. Appleton, A.F. Hebard, High efficiency graphene solar cells by chemical doping. Nano Lett. 12, 2745–2750 (2012)ADSGoogle Scholar
  13. 13.
    C.-H. Lu, H.-H. Yang, C.-L. Zhu, X. Chen, G.-N. Chen, A graphene platform for sensing biomolecules. Angew. Chem. 121, 4879–4881 (2009)Google Scholar
  14. 14.
    O. Leenaerts, B. Partoens, F. Peeters, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys. Rev. B 77, 125416 (2008)ADSGoogle Scholar
  15. 15.
    F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene. ACS Nano 5, 26–41 (2011)Google Scholar
  16. 16.
    G.-D. Lee, C.Z. Wang, E. Yoon, N.-M. Hwang, D.-Y. Kim, K.M. Ho, Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers. Phys. Rev. Lett. 95, 205501 (2005)ADSGoogle Scholar
  17. 17.
    Y. Kim, J. Ihm, E. Yoon, G.-D. Lee, Dynamics and stability of divacancy defects in graphene. Phys. Rev. B 84, 075445 (2011)ADSGoogle Scholar
  18. 18.
    H. Liu, Y. Liu, D. Zhu, Chemical doping of graphene. J. Mater. Chem. 21, 3335–3345 (2011)Google Scholar
  19. 19.
    D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009)ADSGoogle Scholar
  20. 20.
    H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11, 2472–2477 (2011)ADSGoogle Scholar
  21. 21.
    D. Usachov, O. Vilkov, A. Grüneis, D. Haberer, A. Fedorov, V. Adamchuk, A. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano Lett. 11, 5401–5407 (2011)ADSGoogle Scholar
  22. 22.
    T.B. Martins, R.H. Miwa, A.J.R. da Silva, A. Fazzio, Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett. 98, 196803 (2007)ADSGoogle Scholar
  23. 23.
    L. Panchakarla, K. Subrahmanyam, S. Saha, A. Govindaraj, H. Krishnamurthy, U. Waghmare, C. Rao, Synthesis, structure, and properties of boron-and nitrogen-doped graphene. Adv. Mater. 21, 4726–4730 (2009)Google Scholar
  24. 24.
    H. Wang, Q. Wang, Y. Cheng, K. Li, Y. Yao, Q. Zhang, C. Dong, P. Wang, U. Schwingenschlögl, W. Yang, X.X. Zhang, Doping monolayer graphene with single atom substitutions. Nano Lett. 12, 141–144 (2012)ADSGoogle Scholar
  25. 25.
    A.W. Robertson, B. Montanari, K. He, J. Kim, C.S. Allen, Y.A. Wu, J. Olivier, J. Neethling, N. Harrison, A.I. Kirkland, Dynamics of single Fe atoms in graphene vacancies. Nano Lett. 13, 1468–1475 (2013)ADSGoogle Scholar
  26. 26.
    Z. He, K. He, A.W. Robertson, A.I. Kirkland, D. Kim, J. Ihm, E. Yoon, G.-D. Lee, J.H. Warner, Atomic structure and dynamics of metal dopant pairs in graphene. Nano Lett. 14, 3766–3772 (2014)ADSGoogle Scholar
  27. 27.
    P. Venezuela, R. Muniz, A. Costa, D. Edwards, S. Power, M. Ferreira, Emergence of local magnetic moments in doped graphene-related materials. Phys. Rev. B 80, 241413 (2009)ADSGoogle Scholar
  28. 28.
    A. Ambrosi, S.Y. Chee, B. Khezri, R.D. Webster, Z. Sofer, M. Pumera, Metallic impurities in graphenes prepared from graphite can dramatically influence their properties. Angew. Chem. Int. Ed. 51, 500–503 (2012)Google Scholar
  29. 29.
    Y. Mao, G.M. Stocks, J. Zhong, First-principles study of the doping effects in bilayer graphene. New J. Phys. 12, 033046 (2010)ADSGoogle Scholar
  30. 30.
    R. Miwa, T. Martins, A. Fazzio, Hydrogen adsorption on boron doped graphene: an ab initio study. Nanotechnology 19, 155708 (2008)ADSGoogle Scholar
  31. 31.
    J. Dai, J. Yuan, P. Giannozzi, Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study. Appl. Phys. Lett. 95, 232105 (2009)ADSGoogle Scholar
  32. 32.
    G. Chen, S.J. Li, Y. Su, V. Wang, H. Mizuseki, Y. Kawazoe, Improved stability and catalytic properties of Au16 cluster supported on graphane. J. Phys. Chem. C 115, 20168–20174 (2011)Google Scholar
  33. 33.
    L. Qu, Y. Liu, J.-B. Baek, L. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010)Google Scholar
  34. 34.
    R. Kou, Y. Shao, D. Wang, M.H. Engelhard, J.H. Kwak, J. Wang, V.V. Viswanathan, C. Wang, Y. Lin, Y. Wang, I.A. Aksay, J. Liu, Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem. Commun. 11, 954–957 (2009)Google Scholar
  35. 35.
    M.J. Lopez, I. Cabria, J.A. Alonso, Palladium clusters anchored on graphene vacancies and their effect on the reversible adsorption of hydrogen. J. Phys. Chem. C 118, 5081–5090 (2014)Google Scholar
  36. 36.
    D. Sen, R. Thapa, K.K. Chattopadhyay, Small Pd cluster adsorbed double vacancy defect graphene sheet for hydrogen storage: a first-principles study. Int. J. Hydrogen Energy 38, 3041–3049 (2013)Google Scholar
  37. 37.
    I. Fampiou, A. Ramasubramaniam, CO adsorption on defective graphene-supported Pt13 nanoclusters. J. Phys. Chem. C 117, 19927–19933 (2013)Google Scholar
  38. 38.
    X. Liu, L. He, Y.-M. Liu, Y. Cao, Supported gold catalysis: from small molecule activation to green chemical synthesis. Acc. Chem. Res. 47, 793–804 (2013)Google Scholar
  39. 39.
    H.J. Freund, G. Meijer, M. Scheffler, R. Schlogl, M. Wolf, CO Oxidation as a prototypical reaction for heterogeneous processes. Angew. Chem. Int. Ed. 50, 10064–10094 (2011)Google Scholar
  40. 40.
    E.D. Grayfer, L.S. Kibis, A.I. Stadnichenko, O.Y. Vilkov, A.I. Boronin, E.M. Slavinskaya, O.A. Stonkus, V.E. Fedorov, Ultradisperse Pt nanoparticles anchored on defect sites in oxygen-free few-layer graphene and their catalytic properties in CO oxidation. Carbon 89, 290–299 (2015)Google Scholar
  41. 41.
    E. Yoo, T. Okada, T. Akita, M. Kohyama, I. Honma, J. Nakamura, Sub-nano-Pt cluster supported on graphene nanosheets for CO tolerant catalysts in polymer electrolyte fuel cells. J. Power Sources 196, 110–115 (2011)ADSGoogle Scholar
  42. 42.
    G. Kim, S.H. Jhi, Carbon monoxide-tolerant platinum nanoparticle catalysts on defect-engineered graphene. ACS Nano 5, 805–810 (2011)ADSGoogle Scholar
  43. 43.
    Y. Tang, Z. Yang, X. Dai, Preventing the CO poisoning on Pt nanocatalyst using appropriate substrate: a first-principles study. J. Nanopart. Res. 14, 844 (2012)ADSGoogle Scholar
  44. 44.
    S.H. Oh, G.B. Hoflund, Low-temperature catalytic carbon monoxide oxidation over hydrous and anhydrous palladium oxide powders. J. Catal. 245, 35–44 (2007)Google Scholar
  45. 45.
    X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013)Google Scholar
  46. 46.
    Q.G. Jiang, Z.M. Ao, S. Li, Z. Wen, Density functional theory calculations on the CO catalytic oxidation on Al-embedded graphene. RSC Adv. 4, 20290–20296 (2014)Google Scholar
  47. 47.
    Y. Tang, X. Dai, Z. Yang, Z. Liu, L. Pan, D. Ma, Z. Lu, Tuning the catalytic property of non-noble metallic impurities in graphene. Carbon 71, 139–149 (2014)Google Scholar
  48. 48.
    T.-T. Jia, C.-H. Lu, Y.-F. Zhang, W.-K. Chen, A comparative study of CO catalytic oxidation on Pd-anchored graphene oxide and Pd-embedded vacancy graphene. J. Nanopart. Res. 16, 1–11 (2014)Google Scholar
  49. 49.
    Y. Tang, Z. Yang, X. Dai, D. Ma, Z. Fu, Formation, stabilities, and electronic and catalytic performance of platinum catalyst supported on non-metal-doped graphene. J. Phys. Chem. C 117, 5258–5268 (2013)Google Scholar
  50. 50.
    Y. Tang, Z. Yang, X. Dai, A theoretical simulation on the catalytic oxidation of CO on Pt/graphene. Phys. Chem. Chem. Phys. 14, 16566–16572 (2012)Google Scholar
  51. 51.
    M.N. Groves, C. Malardier-Jugroot, M. Jugroot, Improving platinum catalyst durability with a doped graphene support. J. Phys. Chem. C 116, 10548–10556 (2012)Google Scholar
  52. 52.
    F. Li, J. Zhao, Z. Chen, Fe-anchored graphene oxide: a low-cost and easily accessible catalyst for low-temperature CO oxidation. J. Phys. Chem. C 116, 2507–2514 (2012)Google Scholar
  53. 53.
    Y. Li, Z. Zhou, G. Yu, W. Chen, Z. Chen, CO catalytic oxidation on iron-embedded graphene: computational quest for low-cost nanocatalysts. J. Phys. Chem. C 114, 6250–6254 (2010)Google Scholar
  54. 54.
    Y. Tang, J. Zhou, Z. Shen, W. Chen, C. Li, X. Dai, High catalytic activity for CO oxidation on single Fe atom stabilized in graphene vacancies. RSC Adv. 6, 93985–93996 (2016)Google Scholar
  55. 55.
    E.H. Song, Z. Wen, Q. Jiang, CO catalytic oxidation on copper-embedded graphene. J. Phys. Chem. C 115, 3678–3683 (2011)Google Scholar
  56. 56.
    Y. Tang, L. Pan, W. Chen, C. Li, Z. Shen, X. Dai, Reaction mechanisms for CO catalytic oxidation on monodisperse Mo atom-embedded graphene. Appl. Phys. A 119, 475–485 (2015)ADSGoogle Scholar
  57. 57.
    C. Ying, G. Bo, Z. Jing-Xiang, C. Qing-Hai, F. Hong-Gang, Si-doped graphene: an ideal sensor for NO- or NO2-detection and metal-free catalyst for N2O-reduction. J. Mol. Model. 18, 2043–2054 (2012)Google Scholar
  58. 58.
    Y. Tang, Z. Liu, X. Dai, Z. Yang, W. Chen, D. Ma, Z. Lu, Theoretical study on the Si-doped graphene as an efficient metal-free catalyst for CO oxidation. Appl. Surf. Sci. 308, 402–407 (2014)ADSGoogle Scholar
  59. 59.
    G. Yongbing, C. Xianlang, C. Yongyong, Z. Guilin, Z. Xing, W. Jianguo, Atomically dispersed Pd catalysts in graphyne nanopore: formation and reactivity. Nanotechnology 28, 295403 (2017)Google Scholar
  60. 60.
    H. Qi, P. Yu, Y. Wang, G. Han, H. Liu, Y. Yi, Y. Li, L. Mao, Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity. J. Am. Chem. Soc. 137, 5260–5263 (2015)Google Scholar
  61. 61.
    Y. Tang, Z. Lu, W. Chen, W. Li, X. Dai, Geometric stability and reaction activity of Pt clusters adsorbed graphene substrates for catalytic CO oxidation. Phys. Chem. Chem. Phys. 17, 11598–11608 (2015)Google Scholar
  62. 62.
    N. Jin, J. Han, H. Wang, X. Zhu, Q. Ge, A DFT study of oxygen reduction reaction mechanism over O-doped graphene-supported Pt4, Pt3Fe and Pt3V alloy catalysts. Int. J. Hydrogen Energy 40, 5126–5134 (2015)Google Scholar
  63. 63.
    G. Ramos-Sánchez, P.B. Balbuena, CO adsorption on Pt clusters supported on graphite. J. Electroanal. Chem. 716, 23–30 (2014)Google Scholar
  64. 64.
    R. Siburian, J. Nakamura, Formation process of Pt subnano-clusters on graphene nanosheets. J. Phys. Chem. C 116, 22947–22953 (2012)Google Scholar
  65. 65.
    S. Haldar, B.S. Pujari, S. Bhandary, F. Cossu, O. Eriksson, D.G. Kanhere, B. Sanyal, Fen (n = 1−6) clusters chemisorbed on vacancy defects in graphene: stability, spin-dipole moment, and magnetic anisotropy. Phys. Rev. B 89, 205411 (2014)ADSGoogle Scholar
  66. 66.
    D. Xu, J. Zhao, X. Wang, A density functional theory study of the adsorption of bimetallic FenPtm clusters on defective graphene: structural, electronic, and magnetic properties. J. Nanopart. Res. 15, 1–14 (2013)Google Scholar
  67. 67.
    S. Karmakar, C. Chowdhury, A. Datta, Noble-metal-supported GeS monolayer as promising single-atom catalyst for CO oxidation. J. Phys. Chem. C 122, 14488–14498 (2018)Google Scholar
  68. 68.
    C. Chowdhury, A. Datta, Doped boron nitride surfaces: potential metal free bifunctional catalysts for non-aqueous Li–O2 batteries. Phys. Chem. Chem. Phys. 20, 16485–16492 (2018)Google Scholar
  69. 69.
    K. Bhattacharyya, A. Datta, Visible light driven efficient metal free single atom catalyst supported on nanoporous carbon nitride for nitrogen fixation. Phys. Chem. Chem. Phys. 21, 12346–12352 (2019)Google Scholar
  70. 70.
    S. Liu, S. Huang, Theoretical insights into the activation of O2 by Pt single atom and Pt4 nanocluster on functionalized graphene support: Critical role of Pt positive polarized charges. Carbon 115, 11–17 (2017)Google Scholar
  71. 71.
    Z. Gao, A. Li, X. Liu, C. Ma, X. Li, W. Yang, X. Ding, Density functional study of the adsorption of NO on Nin (n = 1, 2, 3 and 4) clusters doped functionalized graphene support. Appl. Surf. Sci. 481, 940–950 (2019)ADSGoogle Scholar
  72. 72.
    C. Chowdhury, A. Datta, Silicon-doped nitrogen-coordinated graphene as electrocatalyst for oxygen reduction reaction. J. Phys. Chem. C 122, 27233–27240 (2018)Google Scholar
  73. 73.
    Y. Tang, W. Chen, Z. Shen, S. Chang, M. Zhao, X. Dai, Nitrogen coordinated silicon-doped graphene as a potential alternative metal-free catalyst for CO oxidation. Carbon 111, 448–458 (2017)Google Scholar
  74. 74.
    G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)Google Scholar
  75. 75.
    G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)ADSGoogle Scholar
  76. 76.
    J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)ADSGoogle Scholar
  77. 77.
    G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)ADSGoogle Scholar
  78. 78.
    G. Henkelman, A. Arnaldsson, H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006)Google Scholar
  79. 79.
    G. Henkelman, B. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000)ADSGoogle Scholar
  80. 80.
    G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000)ADSGoogle Scholar
  81. 81.
    T. Zhu, J. Li, S. Yip, Atomistic study of dislocation loop emission from a crack tip. Phys. Rev. Lett. 93, 25503 (2004)ADSGoogle Scholar
  82. 82.
    M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004)ADSGoogle Scholar
  83. 83.
    T. Thonhauser, V.R. Cooper, S. Li, A. Puzder, P. Hyldgaard, D.C. Langreth, Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond. Phys. Rev. B 76, 125112 (2007)ADSGoogle Scholar
  84. 84.
    Y. Tang, W. Chen, Z. Shen, C. Li, D. Ma, X. Dai, A computational study of CO oxidation reactions on metal impurities in graphene divacancies. Phys. Chem. Chem. Phys. 20, 2284–2295 (2018)Google Scholar
  85. 85.
    A. Alavi, P. Hu, T. Deutsch, P.L. Silvestrelli, J. Hutter, CO oxidation on Pt (111): an ab initio density functional theory study. Phys. Rev. Lett. 80, 3650–3653 (1998)ADSGoogle Scholar
  86. 86.
    M. Ackermann, T. Pedersen, B. Hendriksen, O. Robach, S. Bobaru, I. Popa, C. Quiros, H. Kim, B. Hammer, S. Ferrer, J.W.M. Frenken, Structure and reactivity of surface oxides on Pt (110) during catalytic CO oxidation. Phys. Rev. Lett. 95, 255505 (2005)ADSGoogle Scholar
  87. 87.
    N. Lopez, J.K. Nørskov, Catalytic CO oxidation by a gold nanoparticle: a density functional study. J. Am. Chem. Soc. 124, 11262–11263 (2002)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Quantum Materials Research Center, College of Physics and Electronic EngineeringZhengzhou Normal UniversityZhengzhouChina
  2. 2.College of Physics and Materials ScienceHenan Normal UniversityXinxiangChina

Personalised recommendations