Advertisement

Applied Physics A

, 125:641 | Cite as

Photoluminescence of carbon dots prepared by ball milling and their application in Hela cell imaging

  • Lin Ge
  • Guangkuo Hu
  • Bo Shi
  • Qian Guo
  • Lu Li
  • Libin Zhao
  • Jiangong LiEmail author
Article

Abstract

Carbon dots are small carbon nanoparticles with various surface passivation schemes. The deliberate functionalization of carbon nanoparticles and carbonization of organic or carbon-rich species are two main synthesis routes for carbon dots. However, these two synthesis routes suffer from drawbacks such as critical reaction conditions and uncontrollable structure and performance. In our present work, a hybrid approach combining the advantageous characteristics of these two synthesis routes was applied to prepare carbon dots. The spherical and hydrophilic carbon dots were prepared by high-energy ball milling of active carbon and potassium carbonate. The carbon dots prepared are disperse and fine with an average size of 3.5 nm and a size distribution of 1.6–6.0 nm. They exhibit a nearly excitation-independent and high photostable blue photoluminescence behavior with the maximal emission wavelength at 430 nm. They also show an excellent photostability under high NaCl concentrations or long UV exposure time and a stable photoluminescence behavior in a wide pH range from 3 to 11. They are nearly not cytotoxic to Hela cells, can be taken up by Hela cells, and applied to Hela cell imaging. Our hybrid approach did not use any strong basic and can be scaled up for large-scale preparation of carbon dots.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (nos. 51551201 and 51772137).

Supplementary material

339_2019_2939_MOESM1_ESM.doc (36 kb)
Supplementary file1 (DOC 36 kb)

References

  1. 1.
    Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, P.G. Luo, H. Yang, M.E. Kose, B. Chen, L.M. Veca, S.Y. Xie, Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006)CrossRefGoogle Scholar
  2. 2.
    L. Cao, M.K. Meziani, S. Sahu, Y.P. Sun, Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 46, 171–180 (2013)CrossRefGoogle Scholar
  3. 3.
    R.K. Chava, Y. Im, M. Kang, Nitrogen doped carbon quantum dots as a green luminescent sensitizer to functionalize ZnO nanoparticles for enhanced photovoltaic conversion devices. Mater. Chem. Phys. 229, 303–309 (2017)Google Scholar
  4. 4.
    Y. Zhang, L. Yang, Y. Tian, L. Li, J. Li, T. Qiu, G. Zou, H. Hou, X. Ji, Honeycomb hard carbon derived from carbon quantum dots as anode material for K-ion batteries. Mater. Res. Bull. 93, 214–222 (2019)Google Scholar
  5. 5.
    W. Wei, C. Xu, J. Ren, B. Xu, X. Qu, Sensing metal ions with ion selectivity of a crown ether and fluorescence resonance energy transfer between carbon dots and graphene. Chem. Commun. 48, 1284–1286 (2012)CrossRefGoogle Scholar
  6. 6.
    K. Karaoglu, F. Yilmaz, E. Menteşe, A new fluorescent “turn-off” coumarin-based chemosensor: synthesis, structure and Cu-selective Fluorescent sensing in water samples. J. Fluoresc. 27, 1293–1298 (2017)CrossRefGoogle Scholar
  7. 7.
    J.Y. Marzin, J.M. Gerard, A. Izrael, D. Barrier, G. Bastard, Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. Phys. Rev. Lett. 73, 716–719 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    S. Liu, J. Tian, L. Wang, Y. Luo, W. Lu, X. Sun, Self-assembled graphene platelet-glucose oxidase nanostructures for glucose biosensing. Biosens. Bioelectron. 26, 4491–4496 (2011)CrossRefGoogle Scholar
  9. 9.
    S.T. Yang, J.H. Liu, P. Wang, S. Yang, L. Ge, S. Yan, Y.P. Sun, High-performance red/near-IR carbon dots as fluorescence probes for tumor imaging in vivo. ChemistrySelect 3, 6374–6381 (2018)CrossRefGoogle Scholar
  10. 10.
    Y. Ma, D. Bai, X. Hu, N. Ren, W. Gao, S. Chen, H. Chen, Y. Lu, J. Li, Y. Bai, Robust and antibacterial polymer/mechanically exfoliated graphene nanocomposite fibers for biomedical applications. ACS Appl. Mater. Interface 10, 3002–3010 (2018)CrossRefGoogle Scholar
  11. 11.
    S.L. Hu, K.Y. Niu, J. Sun, J. Yang, N.Q. Zhao, X.W. Du, One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem. 19, 484–488 (2009)CrossRefGoogle Scholar
  12. 12.
    M. Bottini, C. Balasubramanian, M.I. Dawson, A. Bergamaschi, Mustelin T. BellucciS, Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes. J. Phys. Chem. B 110, 831–836 (2006)CrossRefGoogle Scholar
  13. 13.
    Q.L. Zhao, Z.L. Zhang, B.H. Huang, J. Peng, M. Zhang, D.W. Pang, Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun. 41, 5116–5118 (2008)CrossRefGoogle Scholar
  14. 14.
    L. Zheng, Y. Chi, Y. Dong, J. Lin, B. Wang, Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J. Am. Chem. Soc. 131, 4564–4565 (2009)CrossRefGoogle Scholar
  15. 15.
    P. Yang, Z. Zhu, M. Chen, W. Chen, X. Zhou, Microwave-assisted synthesis of xylan-derived carbon quantum dots for tetracycline sensing. Opt. Mater. 85, 329–336 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    M.P. More, P.H. Lohar, A.G. Patil, P.O. Patil, P.K. Deshmukh, Controlled synthesis of blue luminescent graphene quantum dots from carbonized citric acid: assessment of methodology, stability, and fluorescence in an aqueous environment. Mater. Chem. Phys. 220, 11–22 (2018)CrossRefGoogle Scholar
  17. 17.
    J.M. Chabu, K. Zeng, G. Jin, M. Zhang, Y. Li, Y. Liu, Simple approach for the preparation of nitrogen and sulfur codoped carbon dots/reduced graphene oxide as host for high-rate lithiumsulfur batteries. Mater. Chem. Phys. 229, 226–231 (2019)CrossRefGoogle Scholar
  18. 18.
    G.E. LeCroy, S.T. Yang, F. Yang, Y. Liu, K.A.S. Fernando, C.E. Bunker, Y. Hu, P.G. Luo, Y.P. Sun, Functionalized carbon nanoparticles: syntheses and applications in optical bioimaging and energy conversion. Coord. Chem. Rev. 320, 66–81 (2016)CrossRefGoogle Scholar
  19. 19.
    L. Ge, H. Yu, H. Ren, B. Shi, Q. Guo, W. Gao, Z. Li, J. Li, Photoluminescence of carbon dots and their applications in Hela cell imaging and Fe3+ ion detection. J. Mater. Sci. 52, 9979–9989 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    G.E. LeCroy, S.K. Sonkar, F. Yang, M.L. Veca, P. Wang, K.N. Tackett II, J.J. Yu, E. Vasile, H. Qian, Y. Liu, P. Luo, Y.P. Sun, Toward structurally defined carbon dots as ultracompact fluorescent probes. ACS Nano 8, 4522–4529 (2014)CrossRefGoogle Scholar
  21. 21.
    F. Yan, Y. Jiang, X. Sun, Z. Bai, Y. Zhang, X. Zhou, Surface modification and chemical functionalization of carbon dots: a review. Microchim. Acta 185, 424–458 (2018)CrossRefGoogle Scholar
  22. 22.
    F. Zu, F. Yan, Z. Bai, J. Xu, Y. Wang, Y. Huang, X. Zhou, The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim. Acta 184, 1899–1914 (2017)CrossRefGoogle Scholar
  23. 23.
    G.E. LeCroy, K.A.S. Fernando, C.E. Bunker, P. Wang, N. Tomlinson, Y.P. Sun, Steady-state and time-resolved fluorescence strudies on interactions of carbon “quantum” dots with nitrotoluenes. Inorg. Chim. Acta 468, 300–307 (2017)CrossRefGoogle Scholar
  24. 24.
    M.J. Krysmann, A. Kelarakis, P. Dallas, E.P. Giannelis, Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc. 134, 747–750 (2012)CrossRefGoogle Scholar
  25. 25.
    S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 8, 355–381 (2015)CrossRefGoogle Scholar
  26. 26.
    Y. Song, S. Zhu, S. Zhang, Y. Fu, L. Wang, X. Zhao, B. Yang, Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. J. Mater. Chem. C 3, 5976–5984 (2015)CrossRefGoogle Scholar
  27. 27.
    S. Zhu, J. Zhang, S. Tang, C. Qiao, L. Wang, H. Wang, X. Liu, Li Bo, Y. Li, W. Yu, X. Wang, H. Sun, B. Yang, Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv. Funct. Mater. 22, 4732–4740 (2012)CrossRefGoogle Scholar
  28. 28.
    M.I. Rednic, Z. Lu, P. Wang, G.E. LeCroy, F. Yang, Y. Liu, H. Qian, A. Terec, L.M. Veca, F. Lu, Y.P. Sun, Fluorescent carbon 'quantum' dots from thermochemical functionalization of carbon nanoparticles. Chem. Phys. Lett. 639, 109–113 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Hu, M.M. Al Awak, F. Yang, S. Yan, Q. Xiong, P. Wang, Y. Tang, L. Yang, G.E. LeCroy, X. Hou, C.E. Bunker, L. Xu, N. Tomlinson, Y.P. Sun, Photoexcited state properties of carbon dots from thermally induced functionalization of carbon nanoparticles. J. Mater. Chem. C 4, 10554–10561 (2016)CrossRefGoogle Scholar
  30. 30.
    L. Wang, X. Chen, Y. Lu, C. Liu, W. Yang, Carbon quantum dots displaying dual-wavelength photoluminescence and electrochemiluminescence prepared by high-energy ball milling. Carbon 94, 472–478 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Pu, L. Li, J. Ma, F. Lu, J. Li, Disperse fine equiaxed alpha alumina nanoparticles with narrow size distribution synthesized by selective corrosion and coagulation separation. Sci. Rep. 5, 11575 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Shu, J. Lu, Q.X. Mao, R.S. Song, X.Y. Wang, X.W. Chen, J.H. Wang, Ionic liquid mediated organophilic carbon dots for drug delivery and bioimaging. Carbon 114, 324–333 (2017)CrossRefGoogle Scholar
  33. 33.
    H. Ding, S.B. Yu, J.S. Wei, H.M. Xiong, Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10, 484–491 (2016)CrossRefGoogle Scholar
  34. 34.
    L. Shi, L. Li, X. Li, G. Zhang, Y. Zhang, C. Dong, S. Shuang, Excitation-independent yellow-fluorescent nitrogen-doped carbon nanodots for biological imaging and paper-based sensing. Sens. Actuator B 251, 234–241 (2017)CrossRefGoogle Scholar
  35. 35.
    H. Wang, C. Sun, X. Chen, Y. Zhang, V.L. Colvin, Q. Rice, J. Seo, S. Feng, Excitation wavelength independent visible color emission of carbon dots. Nanoscale 9, 1909–1915 (2017)CrossRefGoogle Scholar
  36. 36.
    L. Li, S. Pu, Y. Liu, L. Zhao, J. Ma, J. Li, High-purity disperse α-Al2O3 nanoparticles as synthesized by high-energy ball milling. Adv. Powder Technol. 29, 2194–2203 (2018)CrossRefGoogle Scholar
  37. 37.
    Z. Qian, J. Ma, X. Shan, H. Feng, L. Shao, J. Chen, Highly luminescent N-Doped carbon quantum dots as an effective multifunctional fluorescence sensing platform. Chem. Eur. J. 20, 2254–2263 (2014)CrossRefGoogle Scholar
  38. 38.
    C. Zhu, J. Zhai, S. Dong, Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem. Commun. 48, 9367–9369 (2012)CrossRefGoogle Scholar
  39. 39.
    S. Liu, J. Tian, L. Wang, H. Li, Y. Zhang, X. Sun, Stable aqueous dispersion of graphene nanosheets: noncovalent functionalization by a polymeric reducing agent and their subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Macromolecules 43, 10078–10083 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    S. Fleutot, J.C. Dupin, G. Renaudin, H. Martinez, Intercalation and grafting of benzene derivatives into zinc-aluminum and copper-chromium layered double hydroxide hosts: an XPS monitoring study. Phys. Chem. Chem. Phys. 13, 17564–17578 (2011)CrossRefGoogle Scholar
  41. 41.
    M.J. Bojdys, J.O. Muller, M. Antonietti, A. Thomas, Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem. Eur. J. 14, 8177–8182 (2008)CrossRefGoogle Scholar
  42. 42.
    G. Eda, M. Chhowalla, Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22, 2392–2415 (2010)CrossRefGoogle Scholar
  43. 43.
    H. Li, X. He, Y. Liu, H. Yu, Z. Kang, S.T. Lee, Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment. Mater. Res. Bull. 46, 147–151 (2011)CrossRefGoogle Scholar
  44. 44.
    H. Pan, L. Liu, Z.X. Guo, L. Dai, F. Zhang, D. Zhu, R. Czerw, D.L. Carroll, Carbon nanotubols from mechanochemical reaction. Nano Lett. 3, 29–32 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    I.Y. Jeon, Y.R. Shin, G.J. Sohn, H.J. Choi, S.Y. Bae, J. Mahmood, S.M. Jung, J.M. Seo, M.K. Kim, D.W. Chang, L. Dai, J.B. Baek, Edge-carboxylated graphene nanosheets via ball milling. Proc. Natl. Acad. Sci. USA 109, 5588–5593 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    K.E. Drexler, Nanosystems: molecular machinery, manufacturing, and computation (Wiley, New York, 1992), pp. 990–998Google Scholar
  47. 47.
    K. Tanaka, F. Toda, Solvent-free organic synthesis. Chem. Rev. 100, 1025–1074 (2000)CrossRefGoogle Scholar
  48. 48.
    X. Hou, Y. Hu, P. Wang, L. Yang, M.M. Al Awak, Y. Tang, F.K. Twara, H. Qian, Y.P. Sun, Modified facile synthesis for quantitatively fluorescent carbon dots. Carbon 122, 389–394 (2017)CrossRefGoogle Scholar
  49. 49.
    Y. Liu, P. Wang, K.A. Shiral Fernando, G.E. LeCroy, H. Maimaiti, B.A. Harruff-Miller, W.K. Lewis, C.E. Bunker, Z.L. Hou, Y.P. Sun, Enhanced fluorescence properties of carbon dots in polymer films. J. Mater. Chem. C 4, 6967–6974 (2016)CrossRefGoogle Scholar
  50. 50.
    H. Liu, T. Ye, C. Mao, Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. Ed. 46, 6473–6475 (2007)CrossRefGoogle Scholar
  51. 51.
    X. Zhai, P. Zhang, C. Liu, T. Bai, W. Li, L. Dai, W. Liu, Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem. Commun. 48, 7955–7957 (2012)CrossRefGoogle Scholar
  52. 52.
    D. Pan, J. Zhang, Z. Li, C. Wu, X. Yan, M. Wu, Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chem. Commun. 46, 3681–3683 (2010)CrossRefGoogle Scholar
  53. 53.
    X. Zhang, S. Wang, L. Xu, L. Feng, Y. Ji, L. Tao, S. Li, Y. Wei, Biocompatible polydopamine fluorescent organic nanoparticles: facile preparation and cell imaging. Nanoscale 4, 5581–5584 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    L. Ge, N. Pan, J. Jin, P. Wang, G.E. LeCroy, W. Liang, L. Yang, L.R. Teisl, Y. Tang, Y.P. Sun, Systematic comparison of carbon dots from different preparations-consistent optical properties and photoinduced redox characteristics in visible spectrum and structural and mechanistic implications. J. Phys. Chem. C 122, 21667–21676 (2018)CrossRefGoogle Scholar
  55. 55.
    M. Wang, C.C. Mi, W.X. Wang, C.H. Liu, Y.F. Wu, Z.R. Xu, C.B. Mao, S.K. Xu, Immunolabeling and NIR-excited fluorescent imaging of Hela cells by using NaYF4: Yb, Er upconversion nanoparticles. ACS Nano 3, 1580–1586 (2009)CrossRefGoogle Scholar
  56. 56.
    A. Zhu, Q. Qu, X. Shao, B. Kong, Y. Tian, Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew. Chem. Int. Ed. 51, 7185–7189 (2012)CrossRefGoogle Scholar
  57. 57.
    S.N. Baker, G.A. Baker, Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 49, 6726–6744 (2010)CrossRefGoogle Scholar
  58. 58.
    K. Qu, J. Wang, J. Ren, X. Qu, Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron (III) ions and dopamine. Chem. Eur. J. 19, 7243–7249 (2013)CrossRefGoogle Scholar
  59. 59.
    H. Li, Z. Kang, Y. Liu, S.T. Lee, Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 22, 24230–24253 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Materials Science and Engineering and MOE Key Laboratory for Special Functional Materials and Structure DesignLanzhou UniversityLanzhouChina

Personalised recommendations