Advertisement

Applied Physics A

, 125:644 | Cite as

First principles investigations of structural and optoelectronic properties of cubic MgxZn1−xSeyTe1−y quaternary semiconductor alloys using FP-LAPW approach

  • Debankita Ghosh
  • Sayantika Chanda
  • Bimal Debnath
  • Manish Debbarma
  • Rahul Bhattacharjee
  • Surya ChattopadhyayaEmail author
Article
  • 35 Downloads

Abstract

Structural and optoelectronic properties of technologically important MgxZn1−xSeyTe1−y quaternary alloys are calculated employing DFT-based FP-LAPW approach. Computations of exchange–correlation potentials are performed with PBE-GGA for structural properties and both the mBJ and EV-GGA for optoelectronic properties. Each specimen within MgxZn1−xSeyTe1−y system is a direct band gap (Γ–Γ) semiconductor. At each cationic (Mg) concentration x, lattice constant decreases, while bulk modulus and band gap increase nonlinearly with increase in anionic (Se) concentration y. Again, nonlinear increase in lattice constant and band gap, while decrease in bulk modulus is observed with increase in cationic concentration x at each anionic concentrations y. Calculated band gap bowing for few ternary alloy systems are in good agreement with corresponding experimental data. The calculated contour maps for lattice constants and energy band gaps would be very useful for designing new quaternary alloys with desired optoelectronic properties. Optical properties of the said specimens within MgxZn1−xSeyTe1−y quaternary system show several interesting features. Composition dependence of each calculated zero-frequency limit shows opposite trend, while each calculated critical point shows similar trend of composition dependence of band gap. Finally, suitability of ZnTe and InAs as substrates for the growth of several zinc-blende MgxZn1−xSeyTe1−yquaternary alloys has been investigated.

Notes

Supplementary material

339_2019_2938_MOESM1_ESM.doc (46.1 mb)
Supplementary file1 (DOC 47253 kb)

References

  1. 1.
    D. Long, J.L. Schmit, Semiconductors and Semimetals (Academic Press, New York, 1970)Google Scholar
  2. 2.
    C. Chauvet, V. Bousquet, E. Tournie, J.P. Faurie, J. Electronic Mater. 28, 662 (1999)ADSGoogle Scholar
  3. 3.
    S. Adachi, Properties of Group-IV, III–V and II–VI Semiconductors (John Wiley, New York, 2005)Google Scholar
  4. 4.
    J. Wang, M. Isshiki, Wide-Band-gap II–VI Semiconductors: Growth and properties Springer Handbook of Electronic and Photonic Materials (Springer, Berlin, 2006)Google Scholar
  5. 5.
    C.G. Van de Walle, Wide-Band-Gap Semiconductors (North Holland, Amsterdam, 1993)Google Scholar
  6. 6.
    V. Tomashyk, P. Feychuk, L. Shcherbak, Ternary Alloys Based on II–VI Semiconductor Compounds (CRC Press, New York, 2014)Google Scholar
  7. 7.
    V. Tomashyk, Quaternary Alloys Based on II–VI Semiconductor Compounds (CRC Press, New York, 2015)Google Scholar
  8. 8.
    S. Adachi, Properties of Semiconductor Alloys (Wiley, UK, 2009)Google Scholar
  9. 9.
    M.A. Hasse, J. Qui, J.M. De Puydt, H. Cheng, Appl. Phys. Lett. 59, 1272–1274 (1991)ADSGoogle Scholar
  10. 10.
    H.P. Wagner, S. Wittmann, H. Schmitzer, H. Stanzl, J. Appl. Phys. 77, 3637–3640 (1995)ADSGoogle Scholar
  11. 11.
    M.C. Tamargo, M.J.S.P. Brasil, R.E. Nahory, R.J. Martin, A.L. Weaver, H.L. Gilchrist, Semicond. Sci. Technol. 6, A8–A13 (1991)ADSGoogle Scholar
  12. 12.
    M.W. Wang, J.F. Swenberg, M.C. Phillips, E.T. Yu, J.O. McCaldin, Appl. Phys. Letts. 64, 3455–3457 (1994)ADSGoogle Scholar
  13. 13.
    R.J. Nelmes, M.I. McMohan, Semicond. Semimetals 54, 145–246 (1998)Google Scholar
  14. 14.
    R.G. Greene, H. Luo, A.L. Ruoff, J. Phys. Chem. Solids 56, 521–524 (1995)ADSGoogle Scholar
  15. 15.
    S. Ves, Band Gaps and Phase Transitions in Cubic ZnS, ZnSe and ZnTe. In: H. D. Hochheimer, R. D. Etters (eds) Frontiers of High-Pressure Research. NATO ASI Series (Series B: Physics), vol 286. (Springer, Boston, 1991).Google Scholar
  16. 16.
    A. San-Miguel, A. Polian, M. Gauthier, J.P. Itie, Phys. Rev. B 48, 8683–8693 (1993)ADSGoogle Scholar
  17. 17.
    A.L. Ruoff, T. Li, A.C. Ho, M.F. Pai, H. Luo, R.G. Greene, C. Narayana, J.C. Molstad, S.S. Trail, F.J. Disalvo, P.E. Van Camp, Phys. Rev. Letts. 81, 2723–2726 (1998)ADSGoogle Scholar
  18. 18.
    T. Li, H. Luo, R.G. Greene, A.L. Ruoff, S.S. Trail, F.J. DiSalvo Jr., Phys. Rev. Letts. 74, 5232–5235 (1995)ADSGoogle Scholar
  19. 19.
    H. Okuyama, K. Nakano, T. Miyajima, K. Akimoto, J. Cryst. Growth 117, 139–143 (1992)ADSGoogle Scholar
  20. 20.
    O. Medelung (ed.), Landolt Bornstein: Numerical Data and Functional Relationship in Science and Technology, vol. 17b (Springer, Berlin, 1982)Google Scholar
  21. 21.
    NKh Abrikosov, V.B. Bankina, L.V. Poretskaya, L.E. Shelimova, E.V. Skudnova, Semiconducting II-VI(IVVI and V- VI Compounds (Plenum, New York, 1969)Google Scholar
  22. 22.
    W.H. Strehlow, E.L. Cook, J. Phys. Chem. Ref. Data 2, 163–199 (1973)ADSGoogle Scholar
  23. 23.
    W.A. Harrison, Electronic Structure and the Properties of Solids (Freeman, San-Francisco, 1980)Google Scholar
  24. 24.
    H. Okuyama, K. Nakano, T. Miyajima, K. Akimoto, Japanese. J. Appl. Phys. 30, L1620–L1623 (1991)ADSGoogle Scholar
  25. 25.
    A. Manabe, A. Mitsuishi, H. Yoshinaga, Jpn. J. Appl. Phys. 6, 593–600 (1967)ADSGoogle Scholar
  26. 26.
    D.T.F. Marple, J. Appl. Phys. 35, 539–542 (1964)ADSGoogle Scholar
  27. 27.
    B.H. Lee, J. Appl. Phys. 41, 2988–2990 (1970)ADSGoogle Scholar
  28. 28.
    D. Berlincourt, H. Jaffe, L.R. Shiozawa, Phys. Rev. 29, 1009–1017 (1963)ADSGoogle Scholar
  29. 29.
    B. Jobst, D. Hommel, U. Lunz, T. Gerhard, G. Landwehr, Appl. Phys. Letts. 69, 97–99 (1996)ADSGoogle Scholar
  30. 30.
    K. Watanabe, MTh Litz, M. Korn, W. Ossau, A. Waag, G. Landwehr, U. Schussler, J. Appl. Phys. 81, 451–455 (1997)ADSGoogle Scholar
  31. 31.
    T. Asano, K. Funato, F. Nakamura, A. Ishibashi, J. Cryst. Growth 156, 373–376 (1995)ADSGoogle Scholar
  32. 32.
    MTh Litz, K. Watanabe, M. Korn, H. Ress, U. Lunz, W. Ossau, A. Waag, G. Landwehr, Th Walter, B. Neubauer, D. Gerthsen, U. Schussler, J. Cryst. Growth 159, 54–57 (1996)ADSGoogle Scholar
  33. 33.
    A.U. Ubale, Y.S. Sakhare, S.G. Ibrahim, M.R. Belkhedkar, Solid State Sci. 23, 96–101 (2013)ADSGoogle Scholar
  34. 34.
    A.U. Ubale, Y.S. Sakhare, Materi. Sci. Semicond. Process. 16, 1769–1774 (2013)Google Scholar
  35. 35.
    R. Dahmani, L. Salamanca-Riba, N.V. Nguyen, D. Chandler-Horowitz, B.T. Jonker, J. Appl. Phys. 76, 514–517 (1994)ADSGoogle Scholar
  36. 36.
    Y.D. Kim, S.L. Cooper, M.V. Klein, Appl. Phys. Lett. 62, 2387–2389 (1993)ADSGoogle Scholar
  37. 37.
    J.S. Kim, S.H. Suh, C.H. Kim, S.J. Chung, J. Appl. Phys. 81, 6107–6111 (1997)ADSGoogle Scholar
  38. 38.
    A. Waag, H. Heinke, S. Scholl, C.R. Becker, G. Landwehr, J. Cryst. Growth 131, 607–611 (1993)ADSGoogle Scholar
  39. 39.
    R.C. Tu, Y.K. Su, C.F. Li, Y.S. Huang, S.T. Chou, W.H. Lan, S.L. Tu, H. Chang, J. Appl. Phys. 83, 1664–1669 (1998)ADSGoogle Scholar
  40. 40.
    C.H. Hsu, C.Y. Yan, W.H. Kao, Y.T. Yu, H.H. Tung, Ferroelectrics 491, 118–126 (2016)Google Scholar
  41. 41.
    J. Camacho, A. Cantarero, I. Hernández-Calderon, L. Gonzalez, J. Appl. Phys. 92, 6014–6018 (2002)ADSGoogle Scholar
  42. 42.
    Y. Yang, Y. Hu, C. Liu, W. Li, J. Zhang, L. Wu, J. Yang, Chalcogenide Lett. 13, 521–528 (2016)Google Scholar
  43. 43.
    E. M. Larramendi, K. Gutierrez Z-B, C. Arens, U. Woggon, D. Schikora, K. Lischka, J. Appl. Phys. 107, 103510–103514 (2010)Google Scholar
  44. 44.
    F. Xu, B. Xue, F. Wang, A. Dong, Chem. Mater. 27, 1140–1146 (2015)Google Scholar
  45. 45.
    H. Lee, In-Young. Kim, J. Powell, D. E. Aspnes, S. Lee, F. Peiris, J. K. Furdyna, J. Appl. Phys. 88, 878–882 (2000)Google Scholar
  46. 46.
    F. Firszt, S. Lęgowski, H. Męczynska, H.L. Oczkowski, W. Osinska, J. Szatkowski, W. Paszkowicz, Z.M. Spolnik, J. Cryst. Growth 159, 167–170 (1996)ADSGoogle Scholar
  47. 47.
    K.J. Kim, M.H. Lee, J.H. Bahng, C.Y. Kwak, E. Oh, Solid State Commun. 105, 17–20 (1998)ADSGoogle Scholar
  48. 48.
    X. Liu, U. Bindley, Y. Sasaki, J.K. Furdyna, J. Appl. Phys. 91, 2859–2865 (2002)ADSGoogle Scholar
  49. 49.
    K. Naniwae, H. Iwata, K. Yashiki, Appl. Phys. Letts. 74, 3984–3986 (1999)ADSGoogle Scholar
  50. 50.
    J.H. Chang, H.M. Wang, M.W. Cho, H. Makino, H. Hanada, T. Yao, K. Shim, H. Rabitz, J. Vacuum Sci. Techn. B 18, 1530–1533 (2000)ADSGoogle Scholar
  51. 51.
    S.H. Wei, A. Zunger. Phys. Rev. B 37, 8958–8981 (1988)ADSGoogle Scholar
  52. 52.
    O. Zakharov, A. Rubio, X. Blase, M.L. Cohen, S.G. Louie, Phys. Rev. B 50, 10780–10787 (1994)ADSGoogle Scholar
  53. 53.
    A.E. Merad, M.B. Kanoun, J. Cibert, H. Aourag, G. Merad, Phys. Lett. A 315, 143–149 (2003)ADSGoogle Scholar
  54. 54.
    X.J. Chen, A. Mintz, J.S. Hu, X.L. Hua, J. Zinck, W.A. Goddard-III, J. Vac. Sci. Technol. B 13, 1715–1727 (1995)Google Scholar
  55. 55.
    N.E. Christensen, O.B. Christensen, Phys. Rev. B 33, 4739–4746 (1986)ADSGoogle Scholar
  56. 56.
    G.D. Lee, M.H. Lee, J. Ihm, Phys. Rev. B 52, 1459–1462 (1995)ADSGoogle Scholar
  57. 57.
    R.A. Casali, N.E. Christensen, Solid State Commun. 108, 793–798 (1998)ADSGoogle Scholar
  58. 58.
    R. Gangadharan, V. Jayalakshmi, J. Kalaiselvi, S. Mohan, R. Murugan, B. Palanivel, J. Alloy. Compd. 359, 22–26 (2003)Google Scholar
  59. 59.
    R. Khenata, A. Bouhemadou, M. Sahnoun, A.H. Reshak, H. Baltache, M. Rabah, Comput. Mater. Sci. 38, 29–38 (2006)Google Scholar
  60. 60.
    M. Bilal, M. Shafiq, I. Ahmad, I. Khan, J. Semicond. 35, 072001–072009 (2014)ADSGoogle Scholar
  61. 61.
    F. Kootstra, P.L. de Boeij, J.G. Snijders, Phys. Rev. B 62, 7071–7083 (2000)ADSGoogle Scholar
  62. 62.
    H.Y. Wang, J. Cao, X.Y. Huang, J.M. Huang, Condensed Matter Phys. 15, 13705–13714 (2012)Google Scholar
  63. 63.
    J. Heyd, J.E. Peralta, G.E. Scuseria, J. Chem. Phys. 123, 174101–174107 (2005)ADSGoogle Scholar
  64. 64.
    P.E. Van Camp, V.E.V. Doren, J.L. Martins, Phys. Rev. B 55, 775–779 (1997)ADSGoogle Scholar
  65. 65.
    F. Drief, A. Tadjer, D. Mesri, H. Aourag, Catal. Today 89, 343–355 (2004)Google Scholar
  66. 66.
    S. Duman, S. Bagci, H.M. Tutuncu, G.P. Srivastava, Phys. Rev. B 73, 205201–205214 (2006)ADSGoogle Scholar
  67. 67.
    G. Gokoglu, M. Durandurdu, O. Gulseren, Comp. Mater. Sci. 47, 593–598 (2009)Google Scholar
  68. 68.
    D. Rached, N. Benkhettou, B. Soudini, B. Abbar, N. Sekkal, M. Driz, Phys. Status Solidi B 240, 565–573 (2003)ADSGoogle Scholar
  69. 69.
    G. Kalpana, B. Palanivel, R.M. Thomas, M. Rajagopalan, Phys. B 222, 223–228 (1996)ADSGoogle Scholar
  70. 70.
    S. G, Lee, K. J. Chang, Phys. Rev. B 52, 1918–1925 (1995)ADSGoogle Scholar
  71. 71.
    L. Tairi, S. Touam, A. Boumaza, M. Boukhtouta, H. Meradji, S. Ghemid, S. Bin Omran, F. El Haj Hassan, R. Khenata, Phase Trans., 90, 929–941 (2017)Google Scholar
  72. 72.
    A. Fleszar, W. Hanke, Phys. Rev. B 71, 045207–045211 (2005)ADSGoogle Scholar
  73. 73.
    J.E. Bernard, A. Zunger, Phys. Rev. B 34, 5992–5996 (1986)ADSGoogle Scholar
  74. 74.
    F. El Haj Hassan, B. Amrani, F. Bahsoun, Phys. B 391, 363–370 (2007)Google Scholar
  75. 75.
    Y. Zhu, S.H. Zhang, X.Y. Zhang, A.M. Hao, S.L. Zhang, F. Yang, J.K. Yang, R.P. Liu, Comput. Mater. Sci. 50, 2745–2749 (2011)Google Scholar
  76. 76.
    F. El Haj Hassan, B. Amrani, J. Phys. Cond. Matter 19, 386234–386242 (2007)Google Scholar
  77. 77.
    A. Sajid, A. Afaq, G. Murtaza, Chin. J. Phys. 51, 316–326 (2013)Google Scholar
  78. 78.
    Z. Charifi, H. Baaziz, N. Bouarissa, Mater. Chem. Phys. 84, 273–278 (2004)Google Scholar
  79. 79.
    Z. Charifi, F. El Haj Hassan, H. Baaziz, Sh. Khosravizadeh, S. J. Hashemifar, H. Akbarzadeh, J. Phys. Cond. Matter 17, 7077–7088 (2005)Google Scholar
  80. 80.
    N. Ullah, G. Murtaza, R. Khenata, J. Rehman, H. UdDin, S. Bin Omran, Mater. Sci. Semicond. Proce. 26, 681–689 (2014)Google Scholar
  81. 81.
    I. Khan, F. Subhan, I. Ahmad, Z. Ali, J. Phys. Chem. Solids 83, 75–84 (2015)ADSGoogle Scholar
  82. 82.
    G. Murtaza, N. Ullah, A. Rauf, R. Khenata, S. Bin Omran, M. Sajjad, A. Waheed, Mater. Sci. Semicond. Process. 30, 462–468 (2015)Google Scholar
  83. 83.
    N.A. Noor, A. Shaukat, Int. J. Mod. Phys. B 26, 1250168–1250187 (2012)ADSGoogle Scholar
  84. 84.
    K. Shim, H. Rabitz, J.H. Chang, T. Yao, J. Crystal Growth 214(215), 350–354 (2000)ADSGoogle Scholar
  85. 85.
    F. El Haj Hassan, S. J. Hashemifar, H. Akbarzadeh, Phys. Rev. B 73, 195202–195207 (2006)Google Scholar
  86. 86.
    P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864–871 (1964)ADSGoogle Scholar
  87. 87.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133–A1138 (1965)ADSGoogle Scholar
  88. 88.
    O.K. Andersen, Phys. Rev. B 42, 3063–3083 (1975)Google Scholar
  89. 89.
    P. Blaha, K. Schwarz, P. Sorantin, S.K. Trickey, Comput. Phys. Commun. 59, 339–415 (1990)Google Scholar
  90. 90.
    P. Blaha, K. Schwarz, G. H. Madsen, D. Kbasnicka, J. Luitz, in: K. Schwarz (Ed.) FP-LAPW+lo Program for Calculating Crystal Properties, (Techn. WIEN2K, Austria, 2001).Google Scholar
  91. 91.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Letts. 77, 3865–3868 (1996)ADSGoogle Scholar
  92. 92.
    A.D. Becke, E.R. Johnson, J. Chem. Phys. 124, 221101–221104 (2006)ADSGoogle Scholar
  93. 93.
    F. Tran, P. Blaha, Phys. Rev. Letts. 102, 226401–226404 (2009)ADSGoogle Scholar
  94. 94.
    E. Engel, S.H. Vosko, Phys. Rev. B 47, 13164–13174 (1993)ADSGoogle Scholar
  95. 95.
    A. Kokalj, Comp. Mat. Sci. 28, 155–168 (2003) (Code available from https://www.xcrysden.org/)
  96. 96.
    K. Hacini, H. Meradji, S. Ghemid, F. El Haj Hassan, Chin. Phys. B 21, 036102–036108 (2012)Google Scholar
  97. 97.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244–247 (1944)ADSGoogle Scholar
  98. 98.
    L. Vegard, Z. Phys. 5, 17–26 (1921)ADSGoogle Scholar
  99. 99.
    J.P. Dismukes, L. Ekstrom, R.J. Paff, J. Phys. Chem. 68, 3021–3027 (1964)Google Scholar
  100. 100.
    M. Fox, Optical Properties of Solids (Oxford University Press, UK, 2001)Google Scholar
  101. 101.
    C. Sifi, H. Meradrji, M. Silmani, S. Labidi, S. Ghemid, E. B. Hanneche, F. El Haj Hassan, J. Phys.: Cond. Mat. 21, 195401 (2009).Google Scholar
  102. 102.
    M. Dadsetani, A. Pourghazi, Phys. Rev. B 73, 195102–195108 (2006)ADSGoogle Scholar
  103. 103.
    D.R. Penn, Phys. Rev. 128, 2093–2097 (1962)ADSGoogle Scholar
  104. 104.
    H. Okuyama, Y. Kishita, A. Ishibashi, Phys. Rev. B 57, 2257–2263 (1998)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Debankita Ghosh
    • 1
  • Sayantika Chanda
    • 1
  • Bimal Debnath
    • 1
  • Manish Debbarma
    • 1
  • Rahul Bhattacharjee
    • 1
    • 2
  • Surya Chattopadhyaya
    • 1
    Email author
  1. 1.Department of PhysicsTripura UniversitySuryamaninagarIndia
  2. 2.Department of PhysicsWomen’s CollegeAgartalaIndia

Personalised recommendations