Advertisement

Applied Physics A

, 125:664 | Cite as

Effect of La3+ ions substituted M-type barium hexa-ferrite on magnetic, optical, and dielectric properties

  • Safia AnjumEmail author
  • Amber Seher
  • Zeeshan Mustafa
Article

Abstract

M-type barium hexa-ferrites having general formula Ba1−xLaxFe12O19 (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5) have been prepared through conventional ceramic route. The effect of La3+ ions on structural, surface morphological, optical, magnetic, and frequency-dependent dielectric properties has been investigated through X-ray diffractometer, Fourier transmission infrared spectroscopy, scanning electron microscope, UV–visible spectrophotometer, vibrating sample magnetometer, and inductor capacitor and resistance meter, respectively. XRD confirms the hexagonal structure of La3+-substituted Ba hexa-ferrites. FTIR confirmed that bands in the range 500–600 cm−1 might be due to the stretching vibration of oxygen and metal (Fe–O) ions which confirm the formation of hexa-ferrite. The band-gap energy decreases with increasing concentration of La3+ ions. The coercivity increases with the La3+ substitutions due to high magnetocrystalline anisotropy. It is observed that the dielectric constant and conductivity increase, while tangent loss decreases, as the frequency increases.

Notes

References

  1. 1.
    M. Shimada, S. Magnetics, IEEE Trans. Magn. 35, 3154 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.A. Turchenko, I.S. Kazakevich, A.V. Trukhanov, E.L. Trukhanova, V.O. Natarov, A.M. Balagurov, Thermal evolution of exchange interactions in lightly doped barium hexaferrites. J. Magn. Magn. Mater. 426, 554–562 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    C.C. Barry, N.M. Grant, Ceramic Materials: Science and Engineering (Springer, New York, 2007), pp. 212–215. ISBN 0-387-46270-8Google Scholar
  4. 4.
    A.V. Trukhanova, S.V. Trukhanova, L.V. Paninaa, V.G. Kostishyna, D.N. Chitanova, I.S. Kazakevichb, A.V. Trukhanova, V.A. Turchenkoc, M.M. Salema, Strong correlation between magnetic and electrical subsystems in diamagnetically substituted hexaferrites ceramics. Ceram Int 43, 5635–5641 (2017)CrossRefGoogle Scholar
  5. 5.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V.G. Kostishyn, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, Structure and magnetic properties of BaFe11.9In0.1O19 hexaferrite in a wide temperature range. J. Alloy Compd. 689, 383–393 (2016)CrossRefGoogle Scholar
  6. 6.
    A.V. Trukhanov, S.V. Trukhanov, L.V. Panina, V.G. Kostishyn, I.S. Kazakevich, A.V. Trukhanov, E.L. Trukhanova, V.O. Natarov, V.A. Turchenko, M.M. Salem, A.M. Balagurov, Evolution of structure and magnetic properties for BaFe11.9Al0.1O19 hexaferrite in a wide temperature range. J. Magn. Magn. Mater. 426, 487–496 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, V.A. Turchenko, V.V. Kochervinskiy, Coexistence of spontaneous polarization and magnetization in substituted M-type hexaferrites BaFe12-xAlxO19 (x ≤ 1.2) at room temperature. JETP Lett. 103, 100–105 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    E.W. Gorter, E. David, IEEE Trans. Magn. Mater. 104, 2225–2257 (1957)Google Scholar
  9. 9.
    A.V. Trukhanov, S.V. Trukhanov, V.G. Kostishin, L.V. Panina, M.M. Salem, I.S. Kazakevich, V.A. Turchenko, V.V. Kochervinskii, D.A. Krivchenya, Multiferroic properties and structural features of M-type Al-substituted barium hexaferrites. Phys. Sol. State 59, 737–745 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    S.V. Trukhanov, A.V. Trukhanov, V.O. Turchenko, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, Crystal structure and magnetic properties of the BaFe12 − xInxO19 (x = 0.1-1.2) solid solutions. J. Magn. Magn. Mater. 417, 130–136 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, A.V. Trukhanov, E.L. Trukhanova, D.I. Tishkevich, V.M. Ivanov, T.I. Zubar, M. Salem, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, Polarization origin and iron positions in indium doped barium hexaferrites. Ceram. Int. 44, 290–300 (2018)CrossRefGoogle Scholar
  12. 12.
    T. H. Cho, Y. Shiosaki, H. Noguchi, J. Power Sources, 159-1322-1327 (2006)Google Scholar
  13. 13.
    C.J. Brinker, G.W. Scherer et al., J. Non-cryst. Solid 70, 322 (1990)Google Scholar
  14. 14.
    C.N. Chinnasamy, T. Sakai et al., J. Appl. Phys. 103, 07F710 (2008)CrossRefGoogle Scholar
  15. 15.
    S. Verma, P. Sharma, O.P. Pandey, A. Paesano Jr., A-C. Sun, Structure and magnetic properties of Ba1-x Lax Fe12 O19 prepared by Ba1-x Lax Fe2 O4. IEEE Trans. Magn. (2014).  https://doi.org/10.1109/TMAG.2013.2278373 CrossRefGoogle Scholar
  16. 16.
    V.A. Turchenko, S.V. Trukhanov, A.M. Balagurov, V.G. Kostishyn, A.V. Trukhanov, L.V. Panina, E.L. Trukhanova, Features of crystal structure and dual ferroic properties of BaFe12-xMexO19 (Me = In3 + and Ga3 + ; x = 0.1-1.2). J. Magn. Magn. Mater. 464, 139–147 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    J. Li, H. Zhang, Q. Li, Y. Li, G. Yu, Influence of La-Co substitution on the structure and magnetic properties of low-temperature sintered M-type barium ferrites. J. Rare Earths 31(10), 983 (2013)CrossRefGoogle Scholar
  18. 18.
    R.M. Kershi, S.O. Al-Asbahi, Preparation and structural properties of nanohexa ferrite doped with lanthanum rare earth ions. In: International Journal of Chemical, Environmental & Biological Sciences (IJCEBS), Vol. 1, ISSN 2320–4087 (2013)Google Scholar
  19. 19.
    S. Ounnunkad, Improving magnetic properties of barium hexaferrites by La or Pr substitution. Solid State Commun. 138, 472–475 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, V.V. Oleynik, O.S. Yakovenko, L.Y. Matzui, D.A. Vinnik, Magnetic, dielectric and microwave properties of the BaFe12-xGaxO19 (x ≤ 1.2) solid solutions at room temperature. J. Magn. Magn. Mater. 442, 300–310 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, R. Szymczak, M. Baran, Thermal stability of A-site ordered PrBaMn2O6 manganites. J. Phys. Chem. Solids 67, 675–681 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, Effect of magnetic fields on magnetic phase separation in anion-deficient manganite La0.70Sr0.30MnO2.85. Low Temp. Phys. 37, 465 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, A.V. Trukhanov, D.I. Tishkevich, E.L. Trukhanova, T.I. Zubar, D.V. Karpinsky, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, E.A. Trofimov, P. Thakur, A. Thakur, Y. Yang, Magnetic and dipole moments in indium doped barium hexaferrites. J. Magn. Magn. Mater. 457, 83–96 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    S.V. Trukhanov, A.V. Trukhanov, C.E. Botez, A.H. Adair, H. Szymczak, R. Szymczak, Phase separation and size effects in Pr0.70Ba0.30MnO3 + δ perovskite manganites. J. Phys. Condens. Matter 19, 266214–266218 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    V.C. Chavan, S.E. Shirsath, M.L. Mane, R.H. Kadam, S.S. More, Transformation of hexagonal to mixed spinel crystal structure and magnetic properties of Co2 + substituted BaFe12O19. J. Magn. Magn. Mater. 398, 32–37 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    S.V. Trukhanov, A.V. Trukhanov, S.G. Stepin, H. Szymczak, C.E. Botez, Effect of the size factor on the magnetic properties of manganite La0.50Ba0.50MnO3. Phys. Sol. State 50, 886–893 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    T.R. Wagner, Preparation and crystal structure analysis of magneto-plumbite type BaGa12O19. J. Solid State Chem. 136, 120–124 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edn. (Prentice Hall, New York, 2001)Google Scholar
  29. 29.
    S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, H. Szymczak, Frustrated exchange interactions formation at low temperatures and high hydrostatic pressures in La0.70Sr0.30MnO2.85. JETP 111, 209–214 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    S. Vadivelan, N. Victor Jaya, Investigation of magnetic and structural properties of copper substituted barium ferrite powder particles via co-precipitation method. Results Phys. 6, 843–850 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    S. Salman, S. Aghahi, M. Jafrian, Y. Atassi, Microstructural and magnetic studies on BaMgxZnxX2xFe12-4xO19 (X = Zr, Ce, Sn) prepared via mechanical activation method to act as a microwave absorber in X-band. J. Magn. Magn. Mater. 406, 184–191 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    S. Singhal, K. Kaur, S. Jauhar, S. Bhukal, S. Bansal, Structural and magnetic properties of BaCoxFe12-xO19 (x = 0.2, 0.4, 0.6, &1.0) Nanoferrites synthesized via Citrate Sol-Gel Method. World J. Condensed Matter Phys. 1, 101–104 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    S.V. Trukhanov, Peculiarities of magnetic phase separation in anion-deficient La0.70Sr0.30MnO2.85 manganite. Phys. Solid State 53, 1845–1850 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, C.E. Botez, A. Adair, Magnetotransport properties and mechanism of the A-site ordering in the Nd-Ba optimal-doped manganites. J. Low Temp. Phys. 149, 185–199 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    A. Thakur, R.R. Singh, P.B. Barman, Structural and magnetic properties of La + 3 substituted strontium hexaferrite nanoparticles prepared by citrate precursor method. J. Magn. Magn. Mater. 326, 35–40 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    S.V. Trukhanov, A.V. Trukhanov, A.N. Vasil’ev, A. Maignan, H. Szymczak, Critical Behavior of La0.825Sr0.175MnO2.912 Anion-deficient manganite in the magnetic phase transition region. JETP Lett. 85, 507–512 (2007)CrossRefGoogle Scholar
  37. 37.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, O.S. Yakovenko, L.Y. Matzui, D.A. Vinnik, D.V. Karpinsky, Effect of gallium doping on electromagnetic properties of barium hexaferrite. J. Phys. Chem. Sol. 111, 142–152 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, A.M. Balagurov, H. Szymczak, Magnetic state of the structural separated anion-deficient La0.70Sr0.30MnO2.85 manganite. JETP 113, 819–825 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    G.R. Gordani, A. Ghasemi, A. Saidi, Enhanced magnetic properties of substituted Sr-hexaferrite nanoparticles synthesized by co-precipitation method. Ceram. Int. 40, 4945–4952 (2014)CrossRefGoogle Scholar
  40. 40.
    R.K. Mahadule, P.R. Arjunwadkar, M.P. Mahabole, Synthesis and characterization of CaxSryBa1-x-yFe12-zLazO19 by standard ceramic method. Int. J. Metals 2013, 198970 (2013)CrossRefGoogle Scholar
  41. 41.
    M. Karmakar, B. Mondal, M. Pal, K. Mukherjee, Acetone and ethanol sensing of barium hexaferrite particles: A Case study considering the possibilities of non-conventional hexaferrite sensor. Sens. Actuators B 190, 627–633 (2014)CrossRefGoogle Scholar
  42. 42.
    A. Singh, S. Bindra Narang, K. Singh, O.P. Pandey, R.K. Kotnala, J. Ceram. Process. Res. 11, 241 (2010)Google Scholar
  43. 43.
    M. Azim, S. Atiq, S. Naseem, Structural and electrical characterization of Lanthanum doped Strontium hexaferrites, ISSN 1013-5316. CODEN: SINTE 8 24(4), 341–345 (2012)Google Scholar
  44. 44.
    M.B. Mohamed, Cation distribution and magnetic properties of nanocrystalline gallium substituted cobalt ferrite. J. Alloy. Compd. 615, 181–187 (2014)CrossRefGoogle Scholar
  45. 45.
    J. Smit, Ferrites: Physical properties of ferromagnetic oxides in relation to their technical applications (Wiley Interscience, New York, 1959), pp. 1–369Google Scholar
  46. 46.
    I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, J. Electro. Mater. 43, 512 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    M.J. Iqbal, S. Farooq, Mater. Res. Bull. 46, 662 (2011)CrossRefGoogle Scholar
  48. 48.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, O.S. Yakovenko, L.Y. Matzui, Investigation into the structural features and microwave absorption of doped barium hexaferrites. Dalton Trans. 46, 9010–9021 (2017)CrossRefGoogle Scholar
  49. 49.
    E. Pervaiz, I.H. Gul, Enhancement of electrical properties due to Cr+3 substitution in Co-ferrite nanoparticles synthesized by two chemical techniques. J. Magn. Magn. Mater. 324(22), 3695–3703 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsLahore College for Women UniversityLahorePakistan
  2. 2.Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesBeijingChina
  3. 3.Department of PhysicsLahore Garrison UniversityLahorePakistan

Personalised recommendations