Advertisement

Applied Physics A

, 125:638 | Cite as

Dielectric and electrical study of zinc copper ferrite nanoparticles prepared by exploding wire technique

  • Surendra Singh
  • S. C. Katyal
  • Navendu GoswamiEmail author
Article
  • 61 Downloads

Abstract

The experimental investigation of electrical and dielectric characteristics of spinel Zn–Cu ferrite (ZCFO) nanoparticles, synthesized adopting an exploding wire technique (EWT)-based approach, is reported in this paper. The direct current (DC) electrical parameters of prepared nanoparticles were studied by two-probe method in the range of 300 K (RT) to 423 K. The activation energy for hopping of charge carriers, drift mobility and charge concentration was determined through DC analysis. The attributes of dielectric behavior like dielectric constant (ε′), loss tangent (tan δ), dielectric loss (ε″) and alternating current (AC) conductivity (σAC) were measured at various temperatures in the frequency range of 10 Hz–10 MHz. The increase in AC conductivity with frequency, observed in our study, represented the normal behavior of spinel ferrite. The two-layer model based on space charge polarization could satisfactorily elucidate variation in dielectric constant with frequency. The dielectric parameters at different frequencies were also determined in temperature range of 300–673 K. The decrease in DC resistivity as well as the increase in AC conductivity, with rise in temperature, affirms the semiconducting nature of prepared nanoferrite with the band gap energy of 3.16 eV, as calculated through UV–visible analysis. The capacitance of thin grain boundary region (Cgb), grain boundary resistance (Rgb) and relaxation time (τg) of zinc–copper nanoferrite were estimated through Cole–Cole plot analysis.

Notes

Acknowledgements

Surendra Singh acknowledges the TA fellowship by Jaypee Institute of Information Technology, Noida. We also thank R. K. Dwivedi for impedance characterization.

References

  1. 1.
    I.H. Gul, W. Ahmed, A. Maqsood, J. Magn. Magn. Mater. 320, 270 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    S. Singh, S.C. Katyal, N. Goswami, AIP Conf. Proc. 2009(20022), 1–4 (2018)Google Scholar
  3. 3.
    S. Singh, S.C. Katyal, N. Goswami, AIP Conf. Proc. 2009(20031), 1–3 (2018)Google Scholar
  4. 4.
    B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley, Reading, MA, 1978)Google Scholar
  5. 5.
    M. Sugimoto, J. Am. Ceram. Soc. 82, 269 (1999)CrossRefGoogle Scholar
  6. 6.
    Q. Chen, P. Du, W. Huang, L. Jin, W. Weng, G. Han, Appl. Phys. Lett. 90, 132907 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    M.E. McHenry, D.E. Laughlin, Acta Mater. 48, 223 (2000)CrossRefGoogle Scholar
  9. 9.
    N. Goswami, S. Singh, S.C. Katyal, J Laser Opt. Photonics 4, 158 (2017)Google Scholar
  10. 10.
    J. Parashar, V.K. Saxena, Jyoti, D. Bhatnagar, K.B. Sharma, J. Magn. Magn. Mater. 394, 105 (2015)Google Scholar
  11. 11.
    A. Sutka, G. Mezinskis, A. Lusis, Phys. Scr. 87, 025601 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    S. Singh, A. Sahai, S.C. Katyal, N. Goswami, Materials Science-Poland 36(4), 722–732 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    Z.Z. Lazarevic, C. Jovalekic, A. Milutinovic, D. Sekulic, V.N. Ivanovski, A. Recnik, B. Cekic, N.Z. Romcevic, J. Appl. Phys. 113, 187221 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    H. Anwar, A. Maqsood, Mater. Res. Bull. 49, 426 (2014)CrossRefGoogle Scholar
  15. 15.
    D.L. Sekulic, Z.Z. Lazarevic, M.V. Sataric, C.D. Jovalekic, N.Z. Romcevi, J. Mater. Sci. Mater. Electron 26, 1291–1303 (2015)CrossRefGoogle Scholar
  16. 16.
    A. Sahai, N. Goswami, S.D. Kaushik, S. Tripathi, Appl. Surf. Sci. 390, 974–983 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    A. Sahai, N. Goswami, M. Mishra, G. Gupta, Ceram. Int. 44, 2478–2484 (2018)CrossRefGoogle Scholar
  18. 18.
    S. Supriya, S. Kumar, M. Kar, J. Appl. Phys. 120, 215106 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    E.J.W. Verwey, P.W. Haayman, F.C. Romeijn, G.W. Van Oosterhout, Philips Res. Rep. 5, 173–187 (1950)Google Scholar
  20. 20.
    P.P. Hankare, N.M. Patil, R.P. Patil, D.R. Patil, S.D. Delekar, J. Mater. Sci. Mater. Electron 24, 4028 (2013)CrossRefGoogle Scholar
  21. 21.
    S.P. Yadav, S.S. Shinde, A.A. Kadam, K.Y. Rajpure, J. Alloy Compd. 555, 330 (2013)CrossRefGoogle Scholar
  22. 22.
    P. Dhak, D. Dhak, M. Das, P. Pramanik, J. Mater. Sci. Mater. Electron 22, 1750 (2011)CrossRefGoogle Scholar
  23. 23.
    M.I. Klinger, J. Phys. C Solid State Phys. 8, 3595 (1975)ADSCrossRefGoogle Scholar
  24. 24.
    U. Ghazanfar, S.A. Siddiqi, G. Abbas, Mater. Sci. Eng. B 118, 132 (2005)CrossRefGoogle Scholar
  25. 25.
    M.A. Khan, M.U. Islam, M. Ishaque, I.Z. Rahman, Ceram. Int. 37, 2519 (2011)CrossRefGoogle Scholar
  26. 26.
    A.G. Lone, R.N. Bhowmik, AIP Adv. 5, 047117 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    C.G. Koops, Phys. Rev. 83, 121 (1951)ADSCrossRefGoogle Scholar
  28. 28.
    E.M. Mohammad, K.A. Malins, P. Kurian, M.R. Anantharaman, Mater. Res. Bull. 37, 753 (2002)CrossRefGoogle Scholar
  29. 29.
    H.G. Zhang, J. Zhou, Y. Wang, L.T. Li, Z.X. Yue, Mater. Lett. 55, 351–355 (2002)CrossRefGoogle Scholar
  30. 30.
    G. Uzma, Chin. Phys. B 23(5), 057502 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    J. Bao, J. Zhou, Z.X. Yue, L.T. Li, Z.L. Gui, J. Magn. Magn. Mater. 250, 131 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    M. Guyot, J. Magn. Magn. Mater. 925, 15–18 (1980)Google Scholar
  33. 33.
    C. Prakash, J.S. Baijal, J. Less Common Met. 107, 51 (1985)CrossRefGoogle Scholar
  34. 34.
    G. Sathishkumar, C. Venkataraju, R. Murugaraj, K. Sivakumar, J. Mater. Sci. Mater. Electron 23, 243 (2012)CrossRefGoogle Scholar
  35. 35.
    A.A. Arais, K.E. Rady, M.S. Shams, Bulg. J. Phys. 45, 44 (2018)Google Scholar
  36. 36.
    M.A. Ahmed, M.H. Wasfy, Indian J. Pure Appl. Phys. 41, 731 (2003)Google Scholar
  37. 37.
    A. Thakur, P. Mathur, M. Singh, J. Phys. Chem. Solids 68, 378–381 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    F. Haaberey, Electrical properties (chapter 5). J. Appl. Phys. 40, 2835 (1969)ADSCrossRefGoogle Scholar
  39. 39.
    K. Iwauchi, Jpn. J. Appl. Phys. 10, 1520 (1971)ADSCrossRefGoogle Scholar
  40. 40.
    C. Prakash, J.S. Baijal, J. Less Common Met. 107, 169 (1985)CrossRefGoogle Scholar
  41. 41.
    L.L. Hench, J.K. West, Principles of Electronic Ceramics (Wiley, New York, 1990)Google Scholar
  42. 42.
    C. Venkatraju, G. Satishkumar, K. Sivakumar, J. Alloys Compd. 498, 203–2006 (2010)CrossRefGoogle Scholar
  43. 43.
    K.W. Wagner, Arch. Elektrotechnol. 2, 371 (1914)CrossRefGoogle Scholar
  44. 44.
    M.A. Ali, M.N.I. Khan, F.-U.-Z. Chowdhury, S. Akhter, M.M. Uddin, J. Sci. Res. 7, 65–75 (2015)CrossRefGoogle Scholar
  45. 45.
    P. Mathur, A. Thakur, M. Singh, Int. J. Mod. Phys. B 23, 2523–2533 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    U.N. Trivedi, M.C. Chhantbar, K.B. Modi, H.H. Joshi, Indian J. Pure Appl. Phys. 43, 688–690 (2005)Google Scholar
  47. 47.
    M. Hashim, S. Alimuddin, B. Kumar, H. Koo, S.E. Shirsath, E.M. Mohammed, J. Shah, R.K. Kotnala, H.K. Choi, H. Chung, R. Kumar, J. Alloy. Compd. 11, 518 (2012)Google Scholar
  48. 48.
    M.R. Eraky, S.M. Attia, Phys. B 462, 97–103 (2015)CrossRefGoogle Scholar
  49. 49.
    R.S. Devan, B.K. Chougule, J. Appl. Phys. 101, 014109 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    R.P. Mahajan, K.K. Patankar, M.B. Kothale, S.A. Patil, Conduct. Bull. Mater. Sci. 23(4), 273–279 (2000)CrossRefGoogle Scholar
  51. 51.
    I.G. Austin, N.F. Mott, Adv. Phys. 18(71), 41–102 (1969)ADSCrossRefGoogle Scholar
  52. 52.
    E.J.W. Verwey, J.H. de Boer, Rec. Trav. Chim. Pays Bas 55, 531 (1936)CrossRefGoogle Scholar
  53. 53.
    J. Yamashita, T. Kurosawa, J. Phys. Chem. Solids 5, 34 (1958)ADSCrossRefGoogle Scholar
  54. 54.
    T. Holstein, Studies of polaron motion: Part II. The "small" polaron. Ann. Phys. 8(3), 343–389 (1959)ADSCrossRefGoogle Scholar
  55. 55.
    H.L. Tuller, A.S. Nowick, J. Phys. Chem. Solids 38, 859–867 (1977)ADSCrossRefGoogle Scholar
  56. 56.
    G. Srinivasan, C.M. Srivastava, Phys. Stat. Solidi 103(2), 665–671 (1981)ADSCrossRefGoogle Scholar
  57. 57.
    A.M.M. Farea, S. Kumar, K.M. Batoo, A. Yousef, C.G. Lee, J. Alloy. Compd. 464, 361 (2008)CrossRefGoogle Scholar
  58. 58.
    M.A.E. Hiti, J. Phys. D Appl. Phys. 29, 501 (1996)ADSCrossRefGoogle Scholar
  59. 59.
    J.R. Macdonald, Impedance Spectroscopy: Emphasizing Solid State Material and Systems, Ch. 2 and Ch.4 (Wiley, New York, 1987)Google Scholar
  60. 60.
    D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)ADSCrossRefGoogle Scholar
  61. 61.
    R.K. Dwivedi, D. Kumar, O. Parkash, J. Mater. Sci. 36, 3657–3665 (2001)ADSCrossRefGoogle Scholar
  62. 62.
    M. Younas, M. Nadeem, M. Atif, R. Grossinger, J. Appl. Phys. 109, 093704 (2011)ADSCrossRefGoogle Scholar
  63. 63.
    S.S. Shinde, K.Y. Rajpure, J. Solid State Chem. 183, 2886 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    O. Subohi, L. Shastri, G.S. Kumar, M.M. Malik, R. Kurchania, Mater. Res. Bull. 49, 651 (2014)CrossRefGoogle Scholar
  65. 65.
    H. Anwar, A. Maqsood, J. Magn. Magn. Mater. 333, 46 (2013)ADSCrossRefGoogle Scholar
  66. 66.
    M.V. Nikolic, M.P. Slankamenac, N. Nikolic, D.L. Sekulic, O.S. Aleksic, M. Mitric, T. Ivetic, V.B. Pavlovic, P.M. Nikolic, Sci. Sinter. 44, 307 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and Materials Science and EngineeringJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations