Applied Physics A

, 125:692 | Cite as

Optical radiation forces of focused Gaussian beams on the three-layered microgel particles with near-infrared responses

  • Wei Ju
  • Jie Yao
  • He-Ping DingEmail author
  • Da-Jian WuEmail author


Optical manipulation of three-layered microgel particles with near-infrared responses is important for drug delivery and release in vivo. In this work, we investigate the optical radiation force (ORF) on a three-layered SiO2–Au–pNIPAM particle in a focused Gaussian beam (FGB) based on Mie scattering theory. As the radius of inner SiO2 core increases to 43 nm, the dipole plasmon resonance of the SiO2–Au–pNIPAM particle moves to ~ 800 nm. In the vicinity of this wavelength, the ORF of the FGB on the SiO2–Au–pNIPAM is always positive due to the strong scattering. As the working wavelength is larger than ~ 1100 nm, the gradient force on the particle becomes stronger than the scattering force, and thus the negative ORF is realized. We focus on negative ORF on the SiO2–Au–pNIPAM, and find that the beam waist radius, the outer gel shell, and the embedding medium all influence the ORF on the SiO2–Au–pNIPAM particle. The present work may be helpful for manipulating three-layered microgel particles, with the negative ORF being particularly important for particle trapping.



This work was supported by the National Natural Science Foundation of China (11874222 and 11674175), “333” Project of Jiangsu Province (BRA2017451), and Major Project of Nature Science Research for Colleges and Universities in Jiangsu Province (15KJA140002).


  1. 1.
    M. Amoli-Diva, R. Sadighi-Bonabi, K. Pourghazi, Mater. Sci. Eng. C 76, 242–248 (2017)CrossRefGoogle Scholar
  2. 2.
    W. Wu, J. Shen, P. Banerjee, S. Zhou, Biomaterials 31, 7555–7566 (2010)CrossRefGoogle Scholar
  3. 3.
    M. Karg, Colloid Polym Sci. 290, 673–688 (2012)CrossRefGoogle Scholar
  4. 4.
    Sánchez-Iglesias, M. Grzelczak, B. Rodriguez-González, P. Guardia-Girós, I. Pastoriza-Santos, G Santos, J. Pérez-Juste, M. Prato, L. M. Liz-Marzán, ACS Nano 3, 3184–3190 (2009)CrossRefGoogle Scholar
  5. 5.
    J. Pérez-Juste, I. Pastoriza-Santos, L.M. Liz-Marzan, J. Mater. Chem. A 1, 20–26 (2013)CrossRefGoogle Scholar
  6. 6.
    J.H. Kim, T.R. Lee, Chem. Mater. 16, 3647–3651 (2004)CrossRefGoogle Scholar
  7. 7.
    Y. Lu, Y. Mei, M. Ballauff, J. Phys. Chem. B 110, 3930–3937 (2006)CrossRefGoogle Scholar
  8. 8.
    J.H. Kim, T.R. Lee, Intl. Conf. Biomed. Pharm Eng. 1, 271–275 (2006)Google Scholar
  9. 9.
    M.Y. Park, S. Lim, S.W. Lee, Macromol Res 17, 307–312 (2009)CrossRefGoogle Scholar
  10. 10.
    K. Svoboda, S.M. Block, Opt. Lett. 19, 930–932 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    S. Chu, J.E. Bjorkholm, A. Ashkin, A. Cable, Phys. Rev. Lett. 57, 314–317 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    L. Oroszi, P. Galajda, H. Kirei, S. Bottka, P. Ormos, Phys. Rev. Lett. 97, 058301 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    C. Day, Phys. Today 59, 26–27 (2006)ADSGoogle Scholar
  14. 14.
    A. Ashkin, J.M. Dziedzic, Science 235, 1517–1520 (1987)ADSCrossRefGoogle Scholar
  15. 15.
    A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, M. Käll, ACS Nano 9, 3453–3469 (2015)CrossRefGoogle Scholar
  16. 16.
    J.P. Barton, D.R. Alexander, S.A. Schaub, J. Appl. Phys. 66, 4594–4602 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    R.C. Jin, J.Q. Li, L. Li, Z.G. Dong, Y. Liu, Opt. Lett. 44, 319–322 (2019)ADSCrossRefGoogle Scholar
  18. 18.
    V. Bormuth, A. Jannasch, M. Ander, C.M. van Kats, A. van Blaaderen, J. Howard, E. Schäffer, Opt. Express 16, 13831–13844 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Harada, T. Asakura, Opt. Commun. 124, 529–541 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    F.P. Wu, B. Zhang, Z.L. Liu, Y. Tang, N. Zhang, Opt. Commun. 405, 96–100 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    H. Yu, W. She, J. Opt. Soc. Am. A 32, 90–100 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    L.A. Ambrosio, H.E. Hernández-Figueroa, Biomed. Opt. Express 1, 1284–1301 (2010)CrossRefGoogle Scholar
  23. 23.
    Y. Zhou, H. F. Xu, Y. Yuan, J. Peng, J. Qu, W. Huang, IEEE Photon. J. 8, 6600710 (2016)Google Scholar
  24. 24.
    D.G. Grier, Nature 424, 810–816 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    A. Ashkin, J.M. Dziedzic, T. Yamanet, Nature 330, 769–771 (1987)ADSCrossRefGoogle Scholar
  26. 26.
    R. D. Averitt, S. L. Westcott, Naomi J. Halas, J. Opt. Soc. Am. B 16, 1824–1832 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370–4379 (1972)ADSCrossRefGoogle Scholar
  28. 28.
    G. Gouesbet, B. Maheu, G. Gréhan, J. Opt. Soc. Am. A 5, 1427–1443 (1988)ADSCrossRefGoogle Scholar
  29. 29.
    T.A. Nieminen, N. du Preez-Wilkinson, A.B. Stilgoe, V.L.Y. Loke, A.A.M. Bui, H. Rubinsztein-Dunlop, J. Quant. Spectrosc. Radiat. Transfer 146, 59–80 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    C.F. Bohren, D.R. Huffman, in Absorption and Scattering of Light by Small Particles, ed. By John Wiley, Sons (Wiley, New York, 1983)Google Scholar
  31. 31.
    G. Gouesbet, G. Grehan, B. Maheu, Appl. Opt. 27, 4874–4883 (1988)ADSCrossRefGoogle Scholar
  32. 32.
    G. Gouesbet, G. Gréhan, B. Maheu, J. Opt. Soc. Am. A 7, 998–1007 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    E. Hao, S. Li, Ryan C. Bailey, S. Zou, George C. Schatz, Joseph T. Hupp, J. Phys. Chem. B 108, 1224–1229 (2004)CrossRefGoogle Scholar
  34. 34.
    M. Guo, D. Zhao, Appl. Opt. 56, 1763–1767 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    M. Dienerowitz, M. Mazilu, K. Dholakia, J. Nanophoton. 2, 021875 (2008)CrossRefGoogle Scholar
  36. 36.
    R. Gussgard, T. Lindmo, I. Brevik, Opt. Soc. Am. B 9, 1922–1930 (1992)ADSCrossRefGoogle Scholar
  37. 37.
    L. Ling, F. Zhou, L. Huang, Z.Y. Li, J. Appl. Phys. 108, 073110 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Jiangsu Key Lab On Opto-Electronic Technology, School of Physics and TechnologyNanjing Normal UniversityNanjingChina

Personalised recommendations