Advertisement

Applied Physics A

, 125:642 | Cite as

Structure and photoluminescence characteristics of mixed nickel–chromium oxides nanostructures

  • M. Sh. ZorombaEmail author
  • M. Bassyouni
  • M. H. Abdel-Aziz
  • Ahmed F. Al-HossainyEmail author
  • Numan Salah
  • A. A. Al-Ghamdi
  • Mohamed R. Eid
Article
  • 62 Downloads

Abstract

In this work, nickel–chromium-layered double hydroxide (Ni(II)–Cr(III)LDH) is prepared via co-precipitation method at room temperature with 1:2:3 molar ratio of CrCl3·6H2O: NiCl2·6H2O: NaCl using sodium hydroxide as a precipitating agent. Ni(II)–Cr(III) LDH is synthesized in the absence and in the presence of functionalized amino-organic compounds such as acetamide, glycine, and urea. The ratio between CrCl3·6H2O: NiCl2·6H2O: NaCl: acetamide, glycine or urea was 1:2:3:6. The mixed nickel–chromium oxide nanoparticles are prepared by the calcination of Ni(II)–Cr(III) LDHs at 600 ℃ for 2.5 h. Ni(II)–Cr(III) LDHs and mixed Ni(II)–Cr(III) oxides nanoparticles are characterized by several techniques including FTIR, TGA, XRD, FESEM, HRTEM, and PL. Functionalized amino-organic compounds improve the thermal stability in the order of glycine > urea > acetamide. Also, it affects photoluminescence PL intensity which indicates a marked reduction in electron–hole recombination with the highest photocatalytic activity compared to visible light-driven H2 and O2 evolution. The resulting mixed Ni(II)–Cr(III) oxides particles have an amorphous structure and a relatively uniform size of below 10 nm.

Graphic abstract

Notes

References

  1. 1.
    MSh Zoromba, M.A. Nour, H.E. Eltamimy, S.A. Abed El-Maksoud, Effect of modified layered double hydroxide on the flammability and mechanical properties of polypropylene. Sci. Eng. Compos. Mater. 25, 101–108 (2018)CrossRefGoogle Scholar
  2. 2.
    B. Zümreoglu-Karan, A.V. Ahmet Nedim, Layered double hydroxides-multifunctional nanomaterials. Chem. Pap. Chemicke Zvesti 66, 1–10 (2012)CrossRefGoogle Scholar
  3. 3.
    S. Wang, C. Bryan, H. Gao, P. I. Phol, C. J. Brinker, K. Yu, H. Xu, Y. Yang, P. S. Braterman, Z. Xu, Potential applications of nanostructured materials in nuclear waste management, Sandia Natl. Lab. SAND2003–3313; 2003, 95Google Scholar
  4. 4.
    P. Liu, C. Wang, C. Li, Epoxidation of allylic alcohols on self-assembled polyoxometalates hosted in layered double hydroxides with aqueous H2O2 as oxidant. J Catal. 262, 159–168 (2009)CrossRefGoogle Scholar
  5. 5.
    K. Galejová, L. Obalová, K. Jirátová, K. Pacultová, F. Kovanda, N2O catalytic decomposition-effect of pelting pressure on activity of Co-Mn-Al mixed oxide catalysts. Chem. Pap. Chemicke Zvesti 63, 172–179 (2009)Google Scholar
  6. 6.
    K. Karásková, L. Obalová, K. Jiratová, F. Kovanda, Effect of promoters in Co-Mn-Al mixed oxide catalyst on N2O decomposition. Chem. Eng. J. 160, 480–487 (2010)CrossRefGoogle Scholar
  7. 7.
    S. Casenave, H. Martinez, C. Guimon, A. Auroux, V. Hulea, E. Dumitriu, Acid and base properties of MgCuAl mixed oxides. J. Therm. Anal. Calorim. 72, 191–198 (2003)CrossRefGoogle Scholar
  8. 8.
    M. Park, C. Lee, E.J. Lee, J.H. Choy, J.E. Kim, J. Choi, Layered doublehydroxides as potential solid base for beneficial remediation of endosulfan-contaminated soils. J. Phys. Chem. Solids 65, 513–516 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    J. Carpentier, J.F. Lemonier, S. Siffert, E.A. Zhilinskaya, A. Aboukais, Characterisation of Mg/Al hydrotalcite with interlayer palladium complex for catalytic oxidation of toluene. Appl. Catal. A. Gen. 234, 91–101 (2002)CrossRefGoogle Scholar
  10. 10.
    J.H. Choy, J.S. Jung, J.M. Oh, M. Park, J. Jeong, Y.K. Kang, O.J. Han, Layered double hydroxide as an efficient drug reservoir for folate derivatives. Biomaterials 25, 3059–3064 (2004)CrossRefGoogle Scholar
  11. 11.
    F. Leroux, J.P. Besse, Polymer Interleaved Layered Double Hydroxides: A New Emerging Class of Nanocomposites. Chem. Mater. 13, 3507–3515 (2001)CrossRefGoogle Scholar
  12. 12.
    J. Inacio, C. Taviot-Gueho, C. Forano, J.P. Besse, Adsorption of MCPA pesticide by MgAl- layered double hydroxides. Appl. Clay Sci. 18, 255–264 (2001)CrossRefGoogle Scholar
  13. 13.
    Y. You, H. Zhao, G.F. Vance, Adsorption of dicamba (3,6-dichoro-2-methoxy benzoic acid) in aqueous solution by calcined- layered double hydroxides. Appl. Clay Sci. 21, 217–226 (2002)CrossRefGoogle Scholar
  14. 14.
    V. Prévot, B. Casal, E. Ruiz-Hitzky, Intracrystalline aldylation of benzoate ions into layered double hydroxides. J. Mater. Chem. 11, 554–560 (2001)CrossRefGoogle Scholar
  15. 15.
    E. Gardner, K.M. Huntoon, T.J. Pinnavaia, Direct synthesis of alkonide-intercalated derivatives of hydrotalcite-like layered double hydroxides: precursors for the formation of colloidal layered double hydroxide suspensions and transparent thin films. Adv. Mater. 13, 1263–1266 (2001)CrossRefGoogle Scholar
  16. 16.
    M. Ogawa, K. Kuroda, Photofunctions of intercalation compounds. Chem. Rev. 95, 399–438 (1995)CrossRefGoogle Scholar
  17. 17.
    L. Perioli, T. Posati, M. Nocchetti, F. Bellezza, U. Constantino, A. Cipiciani, Intercalation and release of antiinflamatory drug diclofenac into nanosized ZnAl hydrotalcite-like compound. Appl Clay Sci 53, 374–378 (2011)CrossRefGoogle Scholar
  18. 18.
    S.-J. Ryu, H. Jung, J.-M. Oh, J.-K. Lee, J.-H. Choy, Layered double hydroxides as novel antibacterial drug delivery system. J. Phys. Chem. Solids 71, 685–688 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Z.P. Xu, G.S. Stevenson, C.Q. Lu, G.Q. Lu, P.F. Bartlett, P.P. Gray, Stable suspension of layered double hydroxide nanoparticles in aqueous solution. J. Am. Chem. Soc. 128, 36–37 (2006)CrossRefGoogle Scholar
  20. 20.
    J.A. Gursky, S.D. Blough, C. Luna, C. Gomez, A.N. Luevano, E.A. Gardner, Particle-particle interactions between layered double hydroxide nanoparticles. J. Am. Chem. Soc. 128, 8376–8377 (2006)CrossRefGoogle Scholar
  21. 21.
    P. Gunawan, R. Xu, Synthesis of unusual coral-like layered double hydroxide microspheres in a nonaqueous polar solvent/surfactant system. J. Mater. Chem. 18, 2112–2120 (2008)CrossRefGoogle Scholar
  22. 22.
    Y. Du, G. Hu, D. O’Hare, Nucleation and growth of oriented layered double hydroxides on polymer resin beads. J. Mater. Chem. 19, 1160–1165 (2009)CrossRefGoogle Scholar
  23. 23.
    N.M. Hosny, G. Samir, MSh Zoromba, S. Alghool, doped poly(m-phenylenediamine) (PmPDA): a new precursor for Cr2O3 nanoparticles. Polym. Sci. Ser. B 59, 91–96 (2017)CrossRefGoogle Scholar
  24. 24.
    G. Hu, D. O’Hare, Unique layered double hydroxide morphologies using reverse microemulsion synthesis. J. Am. Chem. Soc. 127, 17808–17813 (2005)CrossRefGoogle Scholar
  25. 25.
    M. De Jesús Martínez-Ortiz, E. Lima, V. Lara, J. Mz Vivar, Structural and textural evolution during folding of layers of layered double hydroxides. Langmuir 24, 8904–8911 (2008)CrossRefGoogle Scholar
  26. 26.
    Y. Kuang, L. Zhao, S. Zhang, F. Zhang, M. Dong, S. Xu, Morphologies preparations and applications of layered double hydroxide micro-/nanostructures. Materials 3, 5220–5235 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    MSh Zoromba, M.H. Abdel-Aziz, M. Bassyouni, New microstructured chromium doped poly (p-toluidine) as new acid–base sensor and precursor for chromic oxide nanostructured. Polym. Adv. Tech 28, 1743–1749 (2017)CrossRefGoogle Scholar
  28. 28.
    N.M. Hosny, G. Samir, MSh Zoromba, S. Alghool, Poly(o-toluidine dihydrochloride): spectral characterization and synthesis of eskolite nanoparticles. Polym. Plast. Eng. 56, 435–442 (2017)CrossRefGoogle Scholar
  29. 29.
    M.Sh. Zoromba, S. Alghool, S. Abdel-Hamid, M. Bassyouni, M. Abdel-Aziz, polymerization of aniline derivatives by K2Cr2O7 and production of Cr2O3 nanoparticles. Polym. Adv. Tech. 28, 842–848 (2017)CrossRefGoogle Scholar
  30. 30.
    MSh Zoromba, N. A. E;-Ghamaz, Dielectrical, electrical conduction properties of doped iron/poly(aniline-co-o-anthranilic acid) copolymer and production of magnetite-hematite nanoparticles based on composites as precursor Materials Express. Mater. Express 6, 414–422 (2016)CrossRefGoogle Scholar
  31. 31.
    A.F. Al-Hossainy, H.K. Thabet, M.S. Zoromba, A. Ibrahim, Facile synthesis and fabrication of a poly (ortho-anthranilic acid) emeraldine salt thin film for solar cell applications. New J. Chem. 42, 10386–10395 (2018)CrossRefGoogle Scholar
  32. 32.
    A. Badr, A. El-Amin, A. Al-Hossainy, Elucidation of charge transport and optical parameters in the newly 1CR-dppm organic crystalline semiconductors. J. Phys. Chem. C 112, 14188–14195 (2008)CrossRefGoogle Scholar
  33. 33.
    A.F. Al-Hossainy, A. Ibrahim, The effects of annealing temperature on the structural properties and optical constants of a novel DPEA-MR-Zn organic crystalline semiconductor nanostructure thin films. Opt. Mater. 73, 138–153 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    A. Ibrahim, M. Abdel-Aziz, M.S. Zoromba, A. Al-Hossainy, Structural, optical, and electrical properties of multi-walled carbon nanotubes/polyaniline/Fe3O4 ternary nanocomposites thin film. Synth. Meter. 238, 1–13 (2018)CrossRefGoogle Scholar
  35. 35.
    O.A. El-Gammal, A.F. Al-Hossainy, S.A. El-Brashy, Spectroscopic, DFT, optical band gap, powder X-ray diffraction and bleomycin-dependant DNA studies of Co (II), Ni (II) and Cu (II) complexes derived from macrocyclic Schiff base. J. Mol. Struct. 1165, 177–195 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    A.F. Al-Hossainy, M.S. Zoromba, R. Hassanien, Eco-friendly method to synthesize and characterize 2D nanostructured (1, 2-bis (diphenyl-phosphino) ethyl) tungsten tetracarbonyl methyl red/copper oxide di-layer thin films. Bull. Mater. Sci. 41, 80 (2018)CrossRefGoogle Scholar
  37. 37.
    A. Al-Hossainy, M.S. Zoromba, New organic semiconductor thin film derived from p-toluidine monomer. J. Mol. Struct. 1156, 83–90 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    A.B. Slimane, A.F. Al-Hossainy, M.S. Zoromba, Synthesis and optoelectronic properties of conductive nanostructured poly(aniline-co-o-aminophenol) thin film. J. Mater. Sci: Mater. Electron. 29, 8431–8445 (2018)Google Scholar
  39. 39.
    A.F. Al-Hossainy, A. Ibrahim, Structural, optical dispersion and dielectric properties of novel chromium nickel organic crystalline semiconductors. Mater. Sci. Semicond. Process 38, 13–23 (2015)CrossRefGoogle Scholar
  40. 40.
    H. Horiuchi, A. Saito, T. Tachi, H. Nagasawa, Structure of synthetic Li2 (Mg, Cu) Cu2 [Si2O6]2: a unique chain silicate related to pyroxene. Am. Miner. 82, 143–148 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    W. G. Mumme, Weibullite Ag (sub 0.32) Pb (sub 5.09) Bi (sub 8.55) Se (sub 6.08) S (11.92) from Falun, Sweden; a higher homologue of galenobismutite, Can. Mineral. 18(1980) 1–12.Google Scholar
  42. 42.
    G.E. Hamburger, M.J. Buerger, The structure of tourmaline. Am. Miner. 33, 532–540 (1948)Google Scholar
  43. 43.
    S.I.L.V.I.O. Menchetti, C.E.S.A.R.E. Sabelli, The crystal structure of baratovite. Am. Miner. 64, 383–389 (1979)Google Scholar
  44. 44.
    T. Araki, T. Zoltai, Refinement of crystal structure of a glauberite. Am. Miner. 52, 1272 (1967)Google Scholar
  45. 45.
    W.A. Dollase, Refinement of the crystal structures of epidote, allanite and hancockite. Am. Miner. 56, 447–464 (1971)Google Scholar
  46. 46.
    G.Y. Chao, Crystal-structure of carletonite-KNA4CA4SI8O18 (CO3)4(F, OH) H2O-double-sheet silicate. Am. Miner. 57, 765 (1972)Google Scholar
  47. 47.
    S. Nayak, L. Mohapatra, K. Parida, Visible light-driven novel g-C3N4/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction. J. Mater. Chem. A 36, 18622–18635 (2015)CrossRefGoogle Scholar
  48. 48.
    N. Balsamo, S. Mendieta, M. Oliva, G. Eimer, M. Crivello, Synthesis and characterization of metal mixed oxides from Layered Double Hydroxides. Procedia Mater. Sci. 1, 506–513 (2012)CrossRefGoogle Scholar
  49. 49.
    X. Guo, F. Zhang, D.G. Evans, X. Duan, Layered double hydroxide films: synthesis, properties and applications. Chem. Commun. 46, 5197–5210 (2010)CrossRefGoogle Scholar
  50. 50.
    L.K. van Vugt, S.J. Veen, E.P.A.M. Bakkers, A.L. Roest, D. Vanmaekelbergh, Increase of the photoluminescence intensity of InP nanowires by photoassisted surface passivation. J. Am. Chem. Soc. 127, 12357–12362 (2005)CrossRefGoogle Scholar
  51. 51.
    F. Davar, M.R. Loghman-Estarki, M. Salavati-Niasari, R. Ashiri, Synthesis of volcano-like CdS/organic nanocomposite. Int. J. Appl. Ceram. Technol. 11, 637–644 (2014)CrossRefGoogle Scholar
  52. 52.
    A.-S. Gadallah, M.M. El-Nahass, Structural, optical constant and photoluminescence of ZnO thin films grown by sol–gel spin coating. Adv. Cond. Matt. Phys. 234546, 11 (2013)Google Scholar
  53. 53.
    O.G. Tovmachenko, C. Graf, D.J. van den Heuvel, A. van Blaaderen, H.C. Gerritsen, Fluorescence enhancement by metal-core/silica-shell nanoparticles. Adv. Mater. 18, 91–95 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringKing Abdulaziz UniversityRabighSaudi Arabia
  2. 2.Department of Chemistry, Faculty of SciencePort Said UniversityPort-SaidEgypt
  3. 3.Department of Chemical Engineering, Faculty of EngineeringPort Said UniversityPort FouadEgypt
  4. 4.Department of Chemical Engineering, Faculty of EngineeringAlexandria UniversityAlexandriaEgypt
  5. 5.Department of Chemistry, Faculty of ScienceNew Valley UniversityAl-Wadi Al-JadidEgypt
  6. 6.Department of Chemistry, Faculty of ScienceNorthern Border UniversityArarSaudi Arabia
  7. 7.Centre of NanotechnologyKing Abdulaziz UniversityJiddaSaudi Arabia
  8. 8.Department of Mathematics, Faculty of ScienceNew Valley UniversityAl-Wadi Al-JadidEgypt
  9. 9.Department of Basic Science, Deanship of Preparatory YearNorthern Border UniversityArarSaudi Arabia

Personalised recommendations