Applied Physics A

, 125:645 | Cite as

Low-temperature dielectric anomaly in Bi0.5K0.5TiO3

  • Yongxing WeiEmail author
  • Ning Zhang
  • Gang Xu
  • Changqing Jin
  • Lin Hu
  • Ling Gao
  • Zengyun Jian
  • Weitong Zhu
Rapid communication


Here, we report our studies on Bi0.5K0.5TiO3 (BKT) prepared by conventional solid-state reaction method and two-step sintering method to further understand the dielectric dispersion around room temperature. The coexistence of the tetragonal and cubic phases is confirmed. Most importantly, we find an extra dielectric loss anomaly around –100 °C. The polarization response suggests the contribution of the hysteresis-free polarization. Correspondingly, a Raman-active mode around 75 cm−1 is frozen on cooling. A model is proposed to interpret the origin of the low-temperature dielectric anomaly.



This work was financially supported by the National Natural Science Foundation of China (Project no. 11704301), Natural Science Basic Research Plan in Shaanxi Province of China (Program no. 2018JQ1092 and 2019JM414) and President’s Fund of Xi’an Technological University (Project no. XAGDXJJ18006).


  1. 1.
    A.A. Bokov, Z.G. Ye, J. Mater. Sci. 41, 31 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    G. Burns, F.H. Dacol, Solid State Commun. 48, 853 (1983)ADSCrossRefGoogle Scholar
  3. 3.
    F. Chu, N. Setter, A.K. Tagantsev, J. Appl. Phys. 74, 5129 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    M. Algueró, B. Jiménez, L. Pardo, Appl. Phys. Lett. 87, 082910 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    B.N. Rao, D.K. Khatua, R. Garg, A. Senyshyn, R. Ranjan, Phys. Rev. B. 91, 214116 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    K.V. Lalitha, J. Koruza, J. Rodel, Appl. Phys. Lett. 113, 252902 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    M. Hagiwara, S. Fujihara, Appl. Phys. Lett. 107, 012903 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    M. Hagiwara, Y. Ehara, N. Novak, N.H. Khansur, A. Ayrikyan, K.G. Webber, S. Fujihara, Phys. Rev. B. 96, 014103 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    J. König, D. Suvorov, J. Eur. Ceram. Soc. 35, 2791 (2015)CrossRefGoogle Scholar
  10. 10.
    J.J. Guo, M.K. Zhu, L. Li, M.P. Zheng, Y.D. Hou, J. Alloy Compd. 703, 448 (2017)CrossRefGoogle Scholar
  11. 11.
    J.J. Guo, M.K. Zhu, L. Li, T.H. Qing, C. Wang, L.Y. Liu, M.P. Zheng, Y.D. Hou, J. Appl. Phys. 121, 014101 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    B.N. Rao, R. Datta, S.S. Chandrashekaran, D.K. Mishra, V. Sathe, A. Senyshyn, R. Ranjan, Phys. Rev. B. 88, 224103 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    M.K. Niranjan, P.K. Kumari, K. Banerjee, S. Asthana, J. Appl. Phys. 123, 244106 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    J. Suchanicz, A. Kania, P. Czaja, A. Budziak, A. Niewiadomski, J. Eur. Ceram. Soc. 38, 567 (2018)CrossRefGoogle Scholar
  15. 15.
    B. Jiang, T.M. Raeder, D.-Y. Lin, T. Grande, S.M. Selbach, Chem. Mater. 30, 2631 (2018)CrossRefGoogle Scholar
  16. 16.
    Y.X. Wei, N. Zhang, C.Q. Jin, W.T. Zhu, Y.M. Zeng, G. Xu, L. Gao, Z.Y. Jian, J. Am. Ceram. Soc. 102, 3598 (2019)CrossRefGoogle Scholar
  17. 17.
    F. Li, S.J. Zhang, T.N. Yang, Z. Xu, N. Zhang, G. Liu, J.J. Wang, J.L. Wang, Z.X. Cheng, Z.G. Ye, J. Luo, T.R. Shrout, L.Q. Chen, Nat. Commun. 7, 13807 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    F. Li, D.B. Lin, Z.B. Chen, Z.X. Cheng, J.L. Wang, C.C. Li, Z. Xu, Q.W. Huang, X.Z. Liao, L.Q. Chen, T.R. Shrout, S.J. Zhang, Nat. Mater. 17, 349 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    F. Li, M.J. Cabral, B. Xu, Z.X. Cheng, E.C. Dickey, J.M. LeBeau, J.L. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L.Q. Chen, T.R. Shrout, S.J. Zhang, Science 364, 264 (2019)ADSCrossRefGoogle Scholar
  20. 20.
    A.R. Paterson, H. Nagata, X.L. Tan, J.E. Daniels, M. Hinterstein, R. Ranjan, P.B. Groszewicz, W. Jo, J.L. Jones, MRS Bull 43, 600 (2018)CrossRefGoogle Scholar
  21. 21.
    H.X. Yan, F. Inam, G. Viola, H.P. Ning, H.T. Zhang, Q.H. Jiang, T. Zeng, Z.P. Gao, M.J. Reece, J. Adv. Dielectr. 1, 107 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials and Chemical EngineeringXi’an Technological UniversityXi’anChina
  2. 2.Electronic Materials Research Lab, Key Laboratory of Ministry of Education and International Center for Dielectric Research, School of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations