Advertisement

Applied Physics A

, 125:637 | Cite as

Structural and optical investigations of pure and Al-doped ZnO nano-aerogels: effects of supercritical organic solvent

  • F. Mouzaia
  • D. DjouadiEmail author
  • A. Chelouche
  • L. Hammiche
  • T. Touam
Article
  • 54 Downloads

Abstract

Undoped (ZnO) and Al-doped ZnO (AZO) aerogels were synthesized in different supercritical alcohols (acetone, ethanol and isopropanol). The effects of supercritical solvent on structural, morphological and optical properties of ZnO and AZO aerogels were studied. XRD patterns reveal that the aerogels were polycrystalline and monophasic, indicating that Al3+ ions have been successfully incorporated into ZnO lattice. SEM images show that morphology and size of the grains are dependent on supercritical drying conditions. FTIR results indicate that the intensity and the position of Zn–O vibration band are dependent on doping atoms and supercritical solvent. The UV–visible studies put into evidence that the optical band gap decreases after Al doping and the absorption intensity is affected by the drying conditions. TGA measurements indicate that Al-doped ZnO aerogels are chemically pure and their thermal behavior is independent on the used supercritical organic alcohol. Room temperature PL studies reveal that the supercritical solvent properties affect considerably the defect concentrations during the elaboration process. Al doping leads to the diminution of the overall PL intensity of ZnO nanostructures elaborated in acetone and ethanol, whereas, the opposite behavior is obtained when isopropanol is used. These results could be of great interest for optical applications.

Notes

Compliance with ethical standards

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, D. Golberg, A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. Sensors 9, 6504–6529 (2009)CrossRefGoogle Scholar
  2. 2.
    D.C. Look, B. Claflin, YaI Alivov, S.J. Park, The future of ZnO light emitters. Phys. Stat. Sol. (a) 201(10), 2203–2212 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res. 88, 428–448 (2016)CrossRefGoogle Scholar
  4. 4.
    T.K. Gupta, Applications of zinc oxide varistors. J. Am. Ceram. Soc. 73(7), 1817–1840 (1990)CrossRefGoogle Scholar
  5. 5.
    M.C. Carotta, A. Cervi, V. di Natale, S. Gherardi, A. Giberti, V. Guidi, D. Puzzovio, B. Vendemiati, G. Martinelli, M. Sacerdoti, D. Calestani, A. Zappettini, M. Zha, L. Zanotti, ZnO gas sensors: a comparison between nanoparticles and nanotetrapods-based thick films. Sens. Actuat. B Chem. 137, 164–169 (2009)CrossRefGoogle Scholar
  6. 6.
    O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, S. Railean, Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications. Sol. Energy Mater. Sol. Cells 93, 1417–1422 (2009)CrossRefGoogle Scholar
  7. 7.
    J. Jiang, J. Pi, J. Cai, The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl. 2018, 1–18 (2018)CrossRefGoogle Scholar
  8. 8.
    P.K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, B. Vaidya, Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov. Today 22, 1825–1834 (2017)CrossRefGoogle Scholar
  9. 9.
    X. Chong, L. Li, X. Yan, D. Hu, H. Li, Y. Wan, Synthesis, characterization and room temperature photoluminescence properties of Al doped ZnO nanorods. Physica E 44, 1399–1405 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    G. Kaurn, A. Mitra, K.L. Yadav, Pulsed laser deposited Al-doped ZnO thin films for optical applications. Prog. Nat. Sci. Mater. 25, 12–21 (2015)CrossRefGoogle Scholar
  11. 11.
    G. Srinet, R. Kumarn, V. Sajal, Effects of aluminum doping on structural and photoluminescence properties of ZnO nanoparticles. Ceram. Int. 40, 4025–4031 (2014)CrossRefGoogle Scholar
  12. 12.
    P. Díaz-Chao, F. Giovannelli, O. Lebedev, D. Chateigner, L. Lutterotti, F. Delorme, E. Guilmeau, Textured Al-doped ZnO ceramics with isotropic grains. J. Eur. Ceram. Soc. 34, 4247–4256 (2014)CrossRefGoogle Scholar
  13. 13.
    N.L. Hadipour, A.A. Peyghan, H. Soleymanabadi, Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors. J. Phys. Chem. C 119, 6398–6404 (2015)CrossRefGoogle Scholar
  14. 14.
    K. Hagedorn, W. Li, Q. Liang, S. Dilger, M. Noebels, M.R. Wagner, J.S. Reparaz, A. Dollinger, J. Schmedt auf der Günne, T. Dekorsy, L. Schmidt-Mende, S. Polarz, Catalytically doped semiconductors for chemical gas sensing: aerogel-like aluminum-containing zinc oxide materials prepared in the gas phase. Adv. Funct. Mater. 26, 3424–3437 (2016)CrossRefGoogle Scholar
  15. 15.
    X. Sun, W. Luo, L. Chen, L. Zheng, C. Bao, P. Sun, N. Huang, Y. Sun, L. Fang, L. Wang, Synthesis of porous Al doped ZnO nanosheets with high adsorption and photodecolorizative activity and the key role of Al doping for methyl orange removal. RSC Adv. 6, 2241–2251 (2016)CrossRefGoogle Scholar
  16. 16.
    Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter 16, R829–R858 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Z. Ait Abdelouhab, D. Djouadi, A. Chelouche, L. Hammiche, T. Touam, Effects of precursors and caustic bases on structural and vibrational properties of ZnO nanostructures elaborated by hydrothermal method. Solid State Sci. 89, 93–99 (2019)ADSCrossRefGoogle Scholar
  18. 18.
    L. Xu, Y.-L. Hu, C. Pelligra, C.-H. Chen, L. Jin, H. Huang, S. Sithambaram, M. Aindow, R. Joesten, S.L. Suib, ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity. Chem. Mater. 21, 2875–2885 (2009)CrossRefGoogle Scholar
  19. 19.
    A. Khorsand Zak, M. Ebrahimizadeh Abrishami, WHAbd Majid, R. Yousefi, S.M. Hosseini, Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method. Ceram. Int. 37, 393–398 (2011)CrossRefGoogle Scholar
  20. 20.
    D. Djouadi, M. Meddouri, A. Chelouche, Structural and optical characterizations of ZnO aerogel nanopowder synthesized from zinc acetate ethanolic solution. Opt. Mater. 37, 567–571 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    K. Byrappa, S. Ohara, T. Adschiri, Nanoparticles synthesis using supercritical fluids technology-towards biomedical applications. Adv. Drug Deliv. Rev. 60, 299–327 (2008)CrossRefGoogle Scholar
  22. 22.
    R.S. Oakes, A.A. Clifford, C.M. Rayner, The use of supercritical fluids in synthetic organic chemistry. J. Chem. Soc. Perkin Trans. 1, 917–941 (2001)CrossRefGoogle Scholar
  23. 23.
    C. Aymonier, A. Loppinet-Serani, H. Reveron, Y. Garrabos, F. Cansell, Review of supercritical fluids in inorganic materials science. J. Supercrit. Fluids 38, 242–251 (2006)CrossRefGoogle Scholar
  24. 24.
    T. Adschiri, A. Yoko, Supercritical fluids for nanotechnology. J. Supercrit. Fluids 134, 167–175 (2018)CrossRefGoogle Scholar
  25. 25.
    R. Campardelli, L. Baldino, E. Reverchon, Supercritical fluids applications in nanomedicine. J. Supercrit. Fluids 101, 193–214 (2015)CrossRefGoogle Scholar
  26. 26.
    O. Slimi, D. Djouadi, L. Hammiche, A. Chelouche, T. Touam, Structural and optical properties of Cu-doped ZnO aerogels synthesized in supercritical ethanol. J. Porous Mater. 25, 595–601 (2018)CrossRefGoogle Scholar
  27. 27.
    M. Meddouri, D. Djouadi, A. Chelouche, T. Touam, A. Chergui, Effect of co-solvent on structural and morphological properties of ZnO aerogel prepared by a modified sol–gel process. Eur. Phys. J. Appl. Phys. 66, 10402–10406 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    F. Ren, R. Xin, X. Ge, Y. Leng, Characterization and structural analysis of zinc substituted hydroxyapatites. Acta Biomater. 5(8), 3141–3149 (2009)CrossRefGoogle Scholar
  29. 29.
    J. Becker, K.R. Raghupathi, J.S. Pierre, D. Zhao, R.T. Koodali, Tuning of the crystallite and particle sizes of ZnO nanocrystalline materials in solvothermal synthesis and their photocatalytic activity for dye degradation. J. Phys. Chem. C 115, 13844–13850 (2011)CrossRefGoogle Scholar
  30. 30.
    C.H. Zhai, R.J. Zhang, X. Chen, Y.X. Zheng, S.Y. Wang, J. Liu, N. Dai, L.Y. Chen, Effects of Al doping on the properties of ZnO thin films deposited by atomic layer deposition. Nanoscale Res. Lett. 11, 407–408 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    S. Salam, M. Islam, A. Akram, Sol–gel synthesis of intrinsic and aluminum-doped zinc oxide thin films as transparent conducting oxides for thin film solar cells. Thin Solid Films 529, 242–247 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    M.K. Song, M.Y. Lee, J.H. Seo, M.H. Kim, S.Y. Yang, Synthesis of high crystalline Al-doped ZnO nanopowders from Al2O3 and ZnO by radio-frequency thermal plasma. J. Nanomater. 2015, 151532–151536 (2015)Google Scholar
  33. 33.
    M. Nafees, W. Liaqut, S. Ali, M.A. Shafique, Synthesis of ZnO/Al: ZnO nanomaterial: structural and band gap variation in ZnO nanomaterial by Al doping. Appl. Nanosci. 3, 49–55 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    K. Spyrou, G. Potsi, E.K. Diamanti, X. Ke, E. Serestatidou, I.I. Verginadis, A.P. Velalopoulou, A.M. Evangelou, Y. Deligiannakis, G. Van Tendeloo, Towards novel multifunctional pillared nanostructures: effective intercalation of adamantylamine in graphene oxide and smectite clays. Adv. Funct. Mater. 24, 5841–5850 (2014)CrossRefGoogle Scholar
  35. 35.
    V. Ischenko, S. Polarz, D. Grote, V. Stavarache, K. Fink, M. Driess, Zinc oxide nanoparticles defects. Adv. Funct. Mater. 15(12), 1945–1954 (2003)CrossRefGoogle Scholar
  36. 36.
    M.J. Robles-Águila, J.A. Luna-López, Á.D. Hernández de la Luz, J. Martínez-Juárez, M.E. Rlabana, Synthesis and characterization of nanocrystalline ZnO doped with Al3+ and Ni2+ by a sol–gel method coupled with ultrasound irradiation. Crystals 8, 406–410 (2018)CrossRefGoogle Scholar
  37. 37.
    B.A. Anandh, A. Shankar Ganesh, R. Thangarasu, R. Sakthivel, R. Kannusamy, K. Tamilselvan, Structural, morphological and optical properties of aluminium doped ZnO thin film by dip-coating method. Orient. J. Chem. 34(3), 1619–1624 (2018)CrossRefGoogle Scholar
  38. 38.
    C.H. Xia, C.G. Hu, C.H. Hu, Z. Ping, F. Wang, Room-temperature ferromagnetic properties of Cu-doped ZnO rod arrays. Bull. Mater. Sci. 34, 1083–1087 (2011)CrossRefGoogle Scholar
  39. 39.
    S. Chattopadhyay, S.K. Neogi, P. Pandit, S. Dutta, T. Rakshit, D. Jana, S. Chattopadhyay, A. Sarkar, S.K. Ray, Disorder driven optical processes in nanocrystalline ZnO. J. Lumin. 132, 6–11 (2012)CrossRefGoogle Scholar
  40. 40.
    H.Y. He, Q. Liang, Enhancement in the optical transmittance of ZnO:Al powders by Mo co-doping. Curr. Appl. Phys. 12, 865–869 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    H.-Y. He, J.-F. Huang, Z. He, J. Lu, Q. Shen, Microstructural and optical properties of transparent conductive ZnO:Al:Mo films deposited by template-assisted sol–gel method. Bull. Mater. Sci. 37, 1–7 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    S.B. Zhang, S.H. Wei, A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B 63, 075205–75207 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    T.M.K. Thandavan, S.M.A. Gani, C.S. Wong, M.R. Nor, Enhanced photoluminescence and Raman properties of Al-doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass. PLoS O ne 10, e0121756–e121818 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • F. Mouzaia
    • 1
  • D. Djouadi
    • 1
    Email author
  • A. Chelouche
    • 1
  • L. Hammiche
    • 1
  • T. Touam
    • 2
  1. 1.Laboratoire de Génie de l’Environnement, Faculté de TechnologieUniversity of BejaiaBejaïaAlgeria
  2. 2.Laboratoire des Semi-conducteursUniversité Badji Mokhtar-AnnabaAnnabaAlgeria

Personalised recommendations