Applied Physics A

, 125:629 | Cite as

Room temperature multiferroicity for BaFe12O19 thin film fabricated by pulsed laser deposition technique

  • Pawan Kumar
  • Anurag GaurEmail author


BaFe12O19 thin film has been deposited on silicon (111) substrate by the pulsed laser deposition (PLD) technique. The remnant polarization is found ~ 0.016 μC/cm2 at room temperature measured by the PE-loop tracer. Ferromagnetic properties of the prepared film have been determined by the superconducting quantum interference device (SQUID) vibrating sample magnetometer which shows the saturation magnetization 216 and 88 emu/cm3 at 300 and 5 K temperature, respectively. Zero fields cool and field cool magnetic measurements have been studied in the temperature range 5–350 K under 100 Oe magnetic field. The BaFe12O19 film has semiconducting behaviour above the 300 kHz frequency with conductivity σ ~ 10–6 Ω−1 cm−1. Further, I–V measurement of the BaFe12O19 film deposit on silicon substrate was carried out within the sweeping voltage ± 10 V, which reveals the diode-like rectifying behaviour. The co-existence of ferromagnetic and ferroelectric properties in a BaFe12O19 film can be used in future generation memory devices.



This work has been financially supported by Council of Scientific & Industrial Research (C.S.I.R.), New Delhi through Grant no: 03(1370)/16/EMR-II. The authors are thankful to Dr. R.J. Choudhary from UGC-DAE-CSR, to provide the PLD and magnetic measurement facility. The authors are also thankful to Dr. M. Gupta from UGC-DAE-CSR, Indore for XRD measurements.


  1. 1.
    N.A. Spaldin, R. Ramesh, Nat. Mater. 18(3), 203–212 (2019)CrossRefGoogle Scholar
  2. 2.
    G. Srinivasan, C. Nan, M. S. Ramachandra Rao, and N. X. Sun, J. Phys. D. Appl. Phys. 52(10), 100301- 100302 (2019)ADSCrossRefGoogle Scholar
  3. 3.
    N. Fujimura, T. Ishida, T. Yoshimura, T. Ito, Appl. Phys. Lett. 69(7), 1011–1013 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    N. Fujimura, H. Sakata, D. Ito, T. Yoshimura, T. Ito, T. Yokota, J. Appl. Phys. 93(10), 6990–6992 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    K.M. Rabe, Phys. Rev. B Condens. Matter Mater. Phys. 59(13), 8759–8769 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu et al., Science 299(5613), 1719–1722 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    M. Mohebbi, K. Ebnabbasi, C. Vittoria, J. Appl. Phys. 113(17), 17C710–17C713 (2013)CrossRefGoogle Scholar
  8. 8.
    S. Zare, H. Izadkhah, C. Vittoria, J. Magn. Magn. Mater. 420, 245–248 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    L.W. Martin, S.P. Crane, Y.H. Chu, M.B. Holcomb, M. Gajek, M. Huijben et al., J. Phys. Condens. Matter. 20(43), 434220–434233 (2008)CrossRefGoogle Scholar
  10. 10.
    G. Tan, X. Chen, J. Magn. Magn. Mater. 327, 87–90 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    P. Kumar, A. Gaur, Ceram. Int. 43(18), 16403–16407 (2017)CrossRefGoogle Scholar
  12. 12.
    Y. Tokunaga, Y. Kaneko, D. Okuyama, S. Ishiwata, T. Arima, S. Wakimoto et al., Rev. Lett. 105(25), 257201–257204 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    M. Manikandan, C. Venkateswaran, J. Magn. Magn. Mater. 358, 82–86 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    X.Y. Zhang, C.K. Ong, S.Y. Xu, Z. Yang, J. Magn. Magn. Mater. 190(3), 171–175 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    I. Harward, Y. Nie, D. Chen, J. Baptist, J.M. Shaw, E. Jakubisová Lišková, et al., J. Appl. Phys. 113(4), 043903–043916 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    D. Chen, Z. Chen, G. Wang, Y. Chen, Y. Li, J. Mater. Sci. Mater. Electron. 28(9), 6737–6740 (2017)CrossRefGoogle Scholar
  17. 17.
    L. Zhang, X.D. Su, Y. Chen, Q.F. Li, V.G. Harris, Scr. Mater. 63(5), 492–495 (2010)CrossRefGoogle Scholar
  18. 18.
    A. Yourdkhani, D. Caruntu, A.K. Perez, G. Caruntu, J. Phys. Chem. C. 118(4), 1774–1782 (2014)CrossRefGoogle Scholar
  19. 19.
    A. Lisfi, J.C. Lodder, J. Magn. Magn. Mater. 242, 391–394 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    R. Tang, H. Zhou, R. Zhao, J. Jian, H. Wang, J. Huang et al., J. Phys. D. Appl. Phys. 49(11), 115305–115311 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    J. Kaur, V. Sharma, V. Sharma, V. Veerakumar, B.K. Kuanr, AIP Adv. 6, 055820–055826 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    P. Kumar, A. Gaur, R.K. Kotnala, Ceram. Int. 43(1), 1180–1185 (2017)Google Scholar
  23. 23.
    Z. Jia, D. Lan, K. Lin, M. Qin, K. Kou, G. Wu, H. Wu, J. Mater. Sci. Mater. Electron. 29(20), 17122–17136 (2018)CrossRefGoogle Scholar
  24. 24.
    Z. Jia, K. Lin, G. Wu, H. Xing, H. Wu, NANO 13(06), 1830005–1830013 (2018)CrossRefGoogle Scholar
  25. 25.
    M. Qin, Q. Shuai, G. Wu, B. Zheng, Z. Wang, and H. Wu, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 224, 125–138 (2017)CrossRefGoogle Scholar
  26. 26.
    P. Smyth and C. Phelps, Dielectric behaviour and structure (McGraw-Hill, Book Company, Inc., New York, 1955)Google Scholar
  27. 27.
    P. Anitha Kumari, B.P. Mandal, E. Abdel amid, R. Naik and A.K. Tyagi, RSC Adv. 6(19), 16073–16080 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of TechnologyKurukshetraIndia

Personalised recommendations