Applied Physics A

, 125:633 | Cite as

Sticking behavior and transformation of tin droplets on silicon wafers and multilayer-coated mirrors

  • Norbert BöweringEmail author
  • Christian Meier


Silicon wafer and multilayer-coated mirror samples were exposed to impact of drops of molten tin to examine the adhesion behavior and cleaning possibilities. The sticking of tin droplets to horizontal substrates was examined for different surface conditions in a high vacuum chamber. Silicon wafers without a coating, with thick oxide top layer, and also with differently capped Mo/Si multilayer coatings optimized for reflection at a wavelength of 13.5 nm were exposed to tin dripping. Depending on the substrate temperature and coating, adhesion as well as detachment with self-peeling and self-contraction of spreaded drops was observed. The adhesion strength of solidified tin splats decreased strongly with decreasing substrate temperature. Non-sticking surface conditions could be generated by substrate super-cooling. The morphology of non-sticking tin droplets was analyzed by profilometry. Adhering deposits were converted in situ via induction of tin pest by infection with gray tin powder and cooling of the samples. The phase transition was recorded by photographic imaging. It caused material embrittlement and detachment after structural transformation within several hours and enabled facile removal of tin contamination without coating damage. The temperature-dependent contamination behavior of tin drops has implications for the preferred operating conditions of extreme ultraviolet light sources with collection optics exposed to tin debris.



This study was motivated by the ongoing industrial development of EUV light sources. We are grateful to the molecular and surface physics group at Bielefeld University for general support and for supplying Mo/Si-coated EUV mirror samples. Furthermore, we would like to thank Torsten Feigl and his team at optiX fab for generously providing several ML-coated mirror samples at our request. This research did not receive any specific grant from funding sources in the public, commercial, or not-for-profit sectors.


  1. 1.
    C. Josserand, S.T. Thoroddsen, Annu. Rev. Fluid Mech. 48, 365 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    R.E. Maringer, Mater. Sci. Eng. 98, 13 (1988)CrossRefGoogle Scholar
  3. 3.
    S. Chandra, P. Fauchet, J. Therm. Spray Technol. 18, 148 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    C.-H. Wang, H.-L. Tsai, W.-S. Hwang, Materials 10, 1 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    M. Pasandideh-Fard, R. Bhola, S. Chandra, J. Mostaghimi, Int. J. Heat Mass Transf. 41, 2929 (1998)CrossRefGoogle Scholar
  6. 6.
    S.D. Aziz, S. Chandra, Int. J. Heat Mass Transf. 43, 2841 (2000)CrossRefGoogle Scholar
  7. 7.
    M. Pasandideh-Fard, S. Chandra, J. Mostaghimi, Int. J. Heat Mass Transf. 45, 2229 (2002)CrossRefGoogle Scholar
  8. 8.
    N.Z. Mehdizadeh, S. Chandra, J. Mostaghimi, Sci. Technol. Adv. Mat. 4, 173 (2003)CrossRefGoogle Scholar
  9. 9.
    J. de Ruiter, D. Soto, K.K. Varanasi, Nat Phys 14, 35 (2018)CrossRefGoogle Scholar
  10. 10.
    I. Fomenkov et al., Adv. Opt. Technol. 6, 173 (2017)ADSGoogle Scholar
  11. 11.
    M. van de Kerkhof et al., Proc. SPIE 10143, 101430D (2017)Google Scholar
  12. 12.
    T. Feigl et al., Proc. SPIE 8322, 832217 (2012)CrossRefGoogle Scholar
  13. 13.
    D.C. Brandt et al., Proc. SPIE 9048, 90480C (2014)Google Scholar
  14. 14.
    H. Mizoguchi et al., J. Laser Micro Nano Eng. 11, 276 (2016)CrossRefGoogle Scholar
  15. 15.
    N.R. Farrar, B.M. La Fontaine, I.V. Fomenkov, D.C. Brandt, Adv. Opt. Technol. 1, 279 (2012)ADSGoogle Scholar
  16. 16.
    D. Elg, J.R. Sporre, G.A. Panici, S.N. Srivastava, D.N. Ruzic, J. Vac. Sci. Technol. A 34, 021305 (2016)CrossRefGoogle Scholar
  17. 17.
    D.T. Elg, G.A. Panici, S. Liu, G. Girolami, S.N. Srivastava, D.N. Ruzic, Plasma Chem. Plasma 223, 38 (2018)Google Scholar
  18. 18.
    G. Panici, D. Qerimi, D.N. Ruzic, Proc. SPIE 10143, 101432I (2017)CrossRefGoogle Scholar
  19. 19.
    N. Böwering, Mater. Chem. Phys. 198, 236 (2017)CrossRefGoogle Scholar
  20. 20.
    N. Böwering, C. Meier, J. Vac. Sci. Technol. B 36, 021602 (2018)CrossRefGoogle Scholar
  21. 21.
    W.J. Plumbridge, J. Mater. Sci: Mater. Electron. 18, 307 (2007)Google Scholar
  22. 22.
    B. Cornelius, S. Treivish, J. Rosenthal, M. Pecht, Microelectron. Reliab. 79, 175 (2017)CrossRefGoogle Scholar
  23. 23.
    A.D. Styrkas, Inorg. Mater. 39, 806 (2003)CrossRefGoogle Scholar
  24. 24.
    A.I. Ershov, N.R. Bowering, B.M. La Fontaine, S. De Dea, US patent 10185234 (22 January 2019).Google Scholar
  25. 25.
    D. Ugur, A.J. Storm, R. Verberk, J.C. Brouwer, W.G. Sloof, Appl. Surf. Sci. 288, 673 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    A.S. Kuznetsov, M.A. Gleeson, F. Bijkerk, J. Phys. Condens. Matter 24, 052203 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    U. Kleineberg, T. Westerwalbesloh, W. Hachmann, U. Heinzmann, J. Tümmler, F. Scholze, G. Ulm, S. Muellender, Thin Solid Films 433, 230 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    Supplier: optiX fab, Jena, Germany.Google Scholar
  29. 29.
    S.T. Thoroddsen, J. Sakakibara, Phys. Fluids 10, 1359 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    J.C. Bird, R. Dhiman, H.M. Kwon, K.K. Varanasi, Nature 503, 385 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    E. Bozorg-Grayeli, Z. Li, M. Asheghi, G. Delgado, A. Pokrovski, M. Panzer, D. Wack, K.E. Goodson, J. Appl. Phys. 112, 083504 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    V.V. Medvedev, J. Yang, A.J. Schmidt, A.E. Yakshin, R.W.E. van de Kruijs, E. Zoethout, F. Bijkerk, J. Appl. Phys. 118, 085101 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    D. Sotiropoulou, P. Nikolopoulos, J. Mater. Sci. 28, 356 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    S. Shakeri, S. Chandra, Int. J. Heat Mass Transf. 45, 4561 (2002)CrossRefGoogle Scholar
  35. 35.
    S. Chandra, C.T. Avedisian, Proc. R. Soc. London Ser. A 432, 13 (1991)ADSCrossRefGoogle Scholar
  36. 36.
    S.T. Thoroddsen, K. Takahara, T.G. Etoh, Phys. Fluids 22, 051701 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    G. Zeng, S.D. McDonald, Q. Gu, S. Matsumura, K. Nogita, Cryst. Growth Des. 15, 5767 (2015)CrossRefGoogle Scholar
  38. 38.
    M. Avrami, J. Chem. Phys. 7, 1103 (1939)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Molecular and Surface PhysicsBielefeld UniversityBielefeldGermany
  2. 2.BökoTechBielefeldGermany

Personalised recommendations