Applied Physics A

, 125:681 | Cite as

Flower-like aluminium nitride nanostructures deposited by rf magnetron sputtering on superhard rhodium boride films

  • F. Di PietrantonioEmail author
  • M. Fosca
  • M. Benetti
  • D. Cannatà
  • C. Verona
  • R. Teghil
  • A. De Bonis
  • J. V. RauEmail author
T.C.: Dedicated to Maria Dinescu


In this work, we demonstrate the feasibility to obtain aluminium nitride (AlN) nanostructures by radio frequency magnetron sputtering technique. In particular, nanostructured flower-like morphologies are achieved through a direct growth of AlN films on superhard rhodium boride (RhB) layers deposited by means of pulsed laser deposition (PLD) technique. AlN is deposited at different substrate temperatures in the range 300–500 °C in order to investigate the effects on morphology and crystalline structure. The samples are characterized by field emission scanning electron microscopy, atomic force microscopy, X-ray diffraction analysis and photoluminescence measurements. Results reveal nanostructured flower-like morphology of AlN for samples grown at different temperatures, while the smoothing of flower-petals with the increasing of temperature is observed. X-ray diffraction analysis indicate that the (002) crystallographic texture of the samples decreased upon the increase of the deposition temperature and only for the sample deposited at 300 °C a strong c-axis orientation is obtained.



The technical assistance of Mr. Marco Ortenzi and Mr. Luca Imperatori is gratefully acknowledged.


  1. 1.
    Z. Farka, T. Juřík, D. Kovář, L. Trnková, P. Skládal, Chem. Rev. 117, 15 (2017)CrossRefGoogle Scholar
  2. 2.
    S.K. Sahoo, S. Parveen, J.J. Panda, Nanomed. Nanotechnol. Biol. Med. 3, 1 (2007)CrossRefGoogle Scholar
  3. 3.
    V. Kostopoulos, A. Masouras, A. Baltopoulos, A. Vavouliotis, G. Sotiriadis, L. Pambaguian, CEAS Space J. 9, 1 (2017)CrossRefGoogle Scholar
  4. 4.
    A. S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nat. Mater. 4, 1 (2005)CrossRefGoogle Scholar
  5. 5.
    Y. Liu, G. Zhou, K. Liu, Y. Cui, Acc. Chem. Res. 50, 12 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Maçaira, L. Andrade, A. Mendes, Renew. Sustain. Energy Rev. 27, 1 (2013)CrossRefGoogle Scholar
  7. 7.
    J. Wu, S. Chen, A. Seeds, H. Liu, J. Phys. D Appl. Phys. 48, 36 (2015)Google Scholar
  8. 8.
    M.A. Boles, D. Ling, T. Hyeon, D.V. Talapin, Nat. Mater. 15, 2 (2016)Google Scholar
  9. 9.
    L. Santo, J. P. Davim, in Materials and Surface Engineering, ed. by J. Paulo Davim (Woodhead Publishing, Cambridge, 2012), pp. 97–120CrossRefGoogle Scholar
  10. 10.
    M. Benetti, D. Cannatà, F. Di Pietrantonio, E. Verona, IEEE Ultrasonics Symp. Proc. (2007). CrossRefGoogle Scholar
  11. 11.
    M. Benetti, D. Cannatà, A. D'Amico, F. Di Pietrantonio, A. Macagnano, E. Verona, IEEE Sensors (2004). CrossRefGoogle Scholar
  12. 12.
    F. Di Pietrantonio, M. Benetti, D. Cannatà, R. Beccherelli, E. Verona, I.E.E.E. Trans, Ultrasonics Ferroelectr. Freq. Control 57, 5 (2010)Google Scholar
  13. 13.
    S. Zhao, A. T. Connie, M. H. T. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, Z. Mi, Sci. Rep. 5, 1 (2015)Google Scholar
  14. 14.
    T. Oto, R. G. Banal, K. Kataoka, M. Funato, Y. Kawakami, Nat. Photonics 4, 1 (2010)CrossRefGoogle Scholar
  15. 15.
    S. Hussain Shah, G. Nabi, W. S. Khan, A. Majid, C. Cao, S. Ali, M. Hussain, A. Nabi, S. Ishaq, F. K. Butt, Mater. Lett. 107, 1 (2013)CrossRefGoogle Scholar
  16. 16.
    W. Qian, Y. Zhang, Q. Wu, C. He, Y. Zhao, X. Wang, Z. Hu, J. Phys. Chem. C 115, 23 (2011)Google Scholar
  17. 17.
    D. Zhang, R.Q. Zhang, Chem. Phys. Lett. 371, 3–4 (2003)Google Scholar
  18. 18.
    V.N. Tondare, C. Balasubramanian, S.V. Shende, D.S. Joag, V.P. Godbole, S.V. Bhoraskar, M. Bhadbhade, Appl. Phys. Lett. 80, 25 (2002)CrossRefGoogle Scholar
  19. 19.
    L.-W. Yin, Y. Bando, Y.-C. Zhu, M.-S. Li, C.C. Tang, D. Golberg, Adv Mater 17, 2 (2005)Google Scholar
  20. 20.
    K.-T. Kenry, K. Yong, S.F. Yu, J. Mater. Sci. 47, 14 (2012)CrossRefGoogle Scholar
  21. 21.
    W. Lei, D. Liu, J. Zhang, P. Zhu, Q. Cui, G. Zou, Cryst. Growth Des. 9, 3 (2009)Google Scholar
  22. 22.
    N.S. Kanhe, A.B. Nawale, R.L. Gawade, V.G. Puranik, S.V. Bhoraskar, A.K. Das, V.L. Mathe, J. Cryst. Growth 339, 1 (2012)CrossRefGoogle Scholar
  23. 23.
    J.H. He, R.S. Yang, Y.L. Chueh, L.J. Chou, L.J. Chen, Z.L. Wang, Adv. Mater. 18, 5 (2006)Google Scholar
  24. 24.
    J.V. Rau, A. Latini, Chem. Mater. 21, 8 (2009)CrossRefGoogle Scholar
  25. 25.
    A. Latini, J.V. Rau, R. Teghil, A. Generosi, V.R. Albertini, ACS Appl. Mater. Interfaces 2, 2 (2010)CrossRefGoogle Scholar
  26. 26.
    A. Latini, J.V. Rau, D. Ferro, R. Teghil, V.R. Albertini, S.M. Barinov, Chem. Mater. 20, 13 (2008)CrossRefGoogle Scholar
  27. 27.
    J.V. Rau, A. Latini, A. Generosi, V. Rossi Albertini, D. Ferro, R. Teghil, S.M. Barinov, Acta Mater. 57, 3 (2009)CrossRefGoogle Scholar
  28. 28.
    B. Paci, A. Generosi, V. Rossi Albertini, M. Benetti, D. Cannatà, F. Di Pietrantonio, E. Verona, Sens. Actuators A Phys. 137, 2 (2007)CrossRefGoogle Scholar
  29. 29.
    M. Benetti, D. Cannata, F. Di Pietrantonio, E. Verona, A. Generosi, B. Paci, V.R. Albertini, Thin Solid Films 497, 1–2 (2006)CrossRefGoogle Scholar
  30. 30.
    B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice-Hall, New York, 2001)Google Scholar
  31. 31.
    A. Iqbal, F. Mohd-Yasin, Sensors 18, 6 (2018)CrossRefGoogle Scholar
  32. 32.
    Y. Tang, H. Cong, F. Li, H.-M. Cheng, Diam. Relat. Mater. 16, 3 (2007)Google Scholar
  33. 33.
    Q. Zhao, H. Zhang, X. Xu, Z. Wang, J. Xu, D. Yu, G. Li, F. Su, Appl Phys Lett 86, 19 (2005)Google Scholar
  34. 34.
    C. Xu, L. Xue, C. Yin, G. Wang, Phys. Status Solidi A 198, 2 (2003)CrossRefGoogle Scholar
  35. 35.
    H. Chen, G. Chen, X. Zhou, W. Zhu, X. Chen, X. Zeng, J. Phys. D Appl. Phys. 44, 50 (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Microelectronics and MicrosystemsNational Research Council of Italy (IMM-CNR)RomeItaly
  2. 2.Istituto di Struttura della MateriaConsiglio Nazionale delle Ricerche (ISM-CNR)RomeItaly
  3. 3.Dipartimento di Ingegneria IndustrialeUniversità di Roma “Tor Vergata”RomeItaly
  4. 4.Dipartimento di ScienzeUniversità della BasilicataPotenzaItaly

Personalised recommendations