Advertisement

Applied Physics A

, 125:623 | Cite as

Influence of vanadium addition on the optical and photoluminescence properties of borate glasses and their glass–ceramic derivatives

  • Fatma H. MarghaEmail author
  • M. A. Marzouk
Article
  • 33 Downloads

Abstract

Nominal B2O3–Na2O–CaO–SrO glasses containing various concentrations of V2O5 ranging from 5 to 40 mol% have been prepared by normal melting and quenching procedure. Data obtained from differential scanning calorimetry (DSC) of the parent glasses were used to prepare glass–ceramic. X-ray diffraction (XRD) patterns of glasses reveal an absence of any identified crystalline phases; while, patterns of the heat-treated glasses showed the crystallization of calcium vanadate (Ca3V2O8), sodium borate (Na2B6O10) and sodium vanadate (NaV3O8) phases. UV–Visible spectra demonstrated characteristic absorption in the UV region centered at ~ 234 and 360 nm that extended to the visible region with increasing V2O5 content. Consequently, the estimated optical parameters such as optical band gap (Eopt), Urbach energy (∆E) and refractive index were dependent on V2O5 content. Photoluminescence spectra were measured before and after crystallization indicating development in the emission spectra after heat treatment. The glasses reveal two sharp emitted peaks at about 466 and 552 nm while the glass–ceramic derivatives depicted an extended emission peak centered at about 700 nm. Based on FTIR data, tetrahedral and trigonal borate groups were identified beside VO4 group when V2O5 was added to the parent glasses. Infrared structural measurements reveal the dual role of V2O5 as glass modifier or former depending on its concentration.

Notes

References

  1. 1.
    R. Barde, S. Waghuley, Preparation and electrical conductivity of novel vanadate borate glass system containing graphene oxide. J Non-Cryst Solids 376, 117–125 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    M. Leventhal, P. Bray, Nuclear magnetic resonance investigations of compounds and glasses in systems PbO–B2O3 and PbO-SiO2. Phys. Chem. Glasses 6, 113 (1965)Google Scholar
  3. 3.
    S. Altin, M. Aksan, E. Altin, Y. Balci, M. Yakinci, Effect of Bi2O3 addition on the single-crystal BiSrCaCuO Whisker growth. J Supercond Novel Magn 24, 331–339 (2011)CrossRefGoogle Scholar
  4. 4.
    R. Ozturk, M. Aksan, S. Altin, M. Yakinci, Y. Balci, Effect of Ce substitution on superconducting properties of Bi2Sr2Ca2Cu3O10+ δ system fabricated by glass-ceramic technique. J Supercond Novel Magn 24, 1105–1110 (2011)CrossRefGoogle Scholar
  5. 5.
    A. Nicula, E. Culea, I. Lupsa, Magnetic behavior and microstructure of x% V2O5·(100–x)% As2O3 glasses. J Non-Cryst Solids 79, 325–332 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    G. Ori, M. Montorsi, A. Pedone, C. Siligardi, Insight into the structure of vanadium containing glasses: a molecular dynamics study. J Non-Cryst Solids 357, 2571–2579 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    H.R. Panchal, Symp. In: Solid state phys, pp. 218 (1996)Google Scholar
  8. 8.
    R.K. Brow, the structure of simple phosphate glasses. J Non-Cryst Solids 263, 1–28 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    J.C. Knowles, Phosphate based glasses for biomedical applications. J Mater Chem 13, 2395–2401 (2003)CrossRefGoogle Scholar
  10. 10.
    C.E. Smith, R.K. Brow, The properties and structure of zinc magnesium phosphate glasses. J Non-Cryst Solids 390, 51–58 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    D. Ehrt, Phosphate and fluoride phosphate optical glasses—properties, structure and applications. Phys. Chem. Glasses 56, 217–234 (2015)Google Scholar
  12. 12.
    G. Guo, Optical and thermal properties of some chemically durable lead phosphate glasses. Glass Technol 39, 138–141 (1998)Google Scholar
  13. 13.
    K. Singh, J. Ratnam, Electrical conductivity of the Li2O.B2O3 system with V2O5. Solid State Ionics 31, 221–226 (1988).MathSciNetCrossRefGoogle Scholar
  14. 14.
    M.V. Rocha, H.W. Carvalho, L.C. Lacerda, G. Simões, G.G. de Souza, T.C. Ramalho, Ionic desorption in PMMA–gamma-Fe2O3 hybrid materials induced by fast electrons: an experimental and theoretical investigation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 117, 276–283 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    S. Prasad, G. Sahaya Baskaran, N. Veeraiah, Spectroscopic, magnetic and dielectric investigations of BaO–Ga2O3–P2O5 glasses doped by Cu ions. Phys. Status Solidi A 202, 2812–2828 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    G. Kiliç, A. Ertunç, Determination of optical band gaps and structural properties of Cu2+ doped B2O3–Na2O–Al2O3–V2O5 glasses. Gazi Univ. J. Sci. 22, 129–139 (2009)Google Scholar
  17. 17.
    S.M. Saheb, R. Vijay, P.R. Babu, G.N. Raju, Structural and spectroscopic studies on lead germanate glasses doped with V2O5. Mater Today Proc 5, 26304–26313 (2018)CrossRefGoogle Scholar
  18. 18.
    S. Das, A. Madheshiya, M. Ghosh, K.K. Dey, S.S. Gautam, J. Singh, R. Mishra, C. Gautam, Structural, optical, and nuclear magnetic resonance studies of V2O5-doped lead calcium titanate borosilicate glasses. J Phys Chem Solids 126, 17–26 (2019)ADSCrossRefGoogle Scholar
  19. 19.
    S. Arya, K. Singh, Structural and optical properties of 30Li2O–55B2O3–5ZnO–xTiO2–(10–x) V2O5, (0 ≤  x≤ 10) glasses. J. Non-Cryst. Solids 414, 51–58 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    J. Gong, H. Zhou, F. He, X. Chen, J. Chen, L. Fang, Structural evolution, low-firing characteristic and microwave dielectric properties of magnesium and sodium vanadate ceramic. Ceram. Int. 41, 11125–11131 (2015)CrossRefGoogle Scholar
  21. 21.
    F.H. Margha, G.T. El-Bassyouni, G.M. Turky, Enhancing the electrical conductivity of vanadate glass system (Fe2O3, B2O3, V2O5) via doping with sodium or strontium cations. Ceram. Int. (2019)Google Scholar
  22. 22.
    E.D. N. Mott, Electronic process in non-crystalline materials, 2nd edn, (Clarendon Press, oxford, 1979), pp. 289.Google Scholar
  23. 23.
    F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids, 1953ADSCrossRefGoogle Scholar
  24. 24.
    V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. I J. Appl. Phys. 79, 1736–1740 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    S. Sen, A. Ghosh, Structural properties of strontium vanadate glasses. J. Mater. Res. 15, 995–999 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    D. Souri, K. Shomalian, Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60–x) V2O5–40TeO2xSb2O3 glasses. J. Non-Cryst. Solids 355, 1597–1601 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    A.A. El-Moneim, DTA and IR absorption spectra of vanadium tellurite glasses. Mater. Chem. Phys. 73, 318–322 (2002)CrossRefGoogle Scholar
  28. 28.
    Y.-R. Luo, Comprehensive handbook of chemical bond energies (CRC Press, Boca Raton, 2007)CrossRefGoogle Scholar
  29. 29.
    F. ElBatal, M. Marzouk, A. Abdelghany, UV–visible and infrared absorption spectra of gamma irradiated V2O5-doped in sodium phosphate, lead phosphate, zinc phosphate glasses: a comparative study. J. Non-Cryst. Solids 357, 1027–1036 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    G. Sigel, R. Ginther, Effect of iron on ultraviolet absorption of high purity soda-Silica glass. Glass Technol. 9, 66 (1968)Google Scholar
  31. 31.
    L. Cook, K.H. Mader, Ultraviolet transmission characteristics of a fluorophosphate laser glass. J. Am. Ceram. Soc. 65, 597–601 (1982)CrossRefGoogle Scholar
  32. 32.
    J. Duffy, Charge transfer spectra of metal ions in glass. Phys. Chem. Glasses 38, 289–292 (1997)Google Scholar
  33. 33.
    D. Möncke, D. Ehrt, Photoinduced redox-reactions and transmission changes in glasses doped with 4d-and 5d-ions. J. Non-Cryst. Solids 352, 2631–2636 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    Z. Hamnabard, Z. Khalkhali, S.S.A. Qazvini, S. Baghshahi, A. Maghsoudipour, Preparation, heat treatment and photoluminescence properties of V-doped ZnO–SiO2–B2O3 glasses. J. Lumin. 132, 1126–1132 (2012)CrossRefGoogle Scholar
  35. 35.
    A.R. Babu, C. Rajyasree, P.S. Rao, P.V. Teja, D.K. Rao, Vanadyl ions influence on spectroscopic and dielectric properties of glass network. J. Mol. Struct. 1005, 83–90 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    G. Tricot, L. Montagne, L. Delevoye, G. Palavit, V. Kostoj, Redox and structure of sodium-vanadophosphate glasses. J. Non-Cryst. Solids 345, 56–60 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    R. Ravikumar, V.R. Reddy, A. Chandrasekhar, B. Reddy, Y. Reddy, P.S. Rao, Tetragonal site of transition metal ions doped sodium phosphate glasses. J. Alloy Compd. 337, 272–276 (2002)CrossRefGoogle Scholar
  38. 38.
    A.M. Nassar, N. Ghoneim, Vanadium contribution in different glasses in view of the ligand field theory. J. Non-Cryst. Solids 46, 181–195 (1981)ADSCrossRefGoogle Scholar
  39. 39.
    H. ElBatal, N. Ghoneim, Absorption spectra of gamma-irradiated sodium phosphate glasses containing vanadium. Nucl. Instrum. Methods Phys. Res. Sect. B 124, 81–90 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    D. Ehrt, Photoluminescence in the UV–VIS region of polyvalent ions in glasses. J. Non-Cryst. Solids 348, 22–29 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    K. Neeraja, T. Rao, A.R. Kumar, V.U. Lakshmi, N. Veeraiah, M.R. Reddy, Spectroscopic properties of Sm3+ and V4+ ions in Na2O–SiO2–ZrO2 glasses. J. Mol. Struct. 1054, 339–348 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    S. Sarkar, K. Chattopadhyay, Size-dependent optical and dielectric properties of BiVO4 nanocrystals. Phys. E 44, 1742–1746 (2012)CrossRefGoogle Scholar
  43. 43.
    S. Chaiwichian, B. Inceesungvorn, K. Wetchakun, S. Phanichphant, W. Kangwansupamonkon, N. Wetchakun, Highly efficient visible-light-induced photocatalytic activity of Bi2WO6/BiVO4 heterojunction photocatalysts. Mater. Res. Bull. 54, 28–33 (2014)CrossRefGoogle Scholar
  44. 44.
    C.J. Ballhausen, H.B. Gray, The electronic structure of the vanadyl ion. Inorg. Chem. 1, 111–122 (1962)CrossRefGoogle Scholar
  45. 45.
    G. Gao, R. Meszaros, M. Peng, L. Wondraczek, Broadband UV-to-green photoconversion in V-doped lithium zinc silicate glasses and glass ceramics. Opt. Express 19, A312–A318 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    C. Hsu, R.C. Powell, Energy transfer in europium doped yttrium vanadate crystals. J. Lumin. 10, 273–293 (1975)CrossRefGoogle Scholar
  47. 47.
    Z. Cheng, R. Xing, Z. Hou, S. Huang, J. Lin, Patterning of light-emitting YVO4: Eu3+ thin films via inkjet printing. J. Phys. Chem. C 114, 9883–9888 (2010)CrossRefGoogle Scholar
  48. 48.
    A. Ramesh Babu, C. Rajyasree, P. Srinivasa Rao, P.M. Vinaya Teja, D. Krishna Rao, Vanadyl ions influence on spectroscopic and dielectric properties of glass network. J. Mol. Struct. 1005, 83–90 (2011).ADSCrossRefGoogle Scholar
  49. 49.
    B. Sumalatha, I. Omkaram, T. Rajavardhana Rao, C. Linga Raju, The effect of V2O5 on alkaline earth zinc borate glasses studied by EPR and optical absorption. J. Mol. Struct. 1006, 96–103 (2011).ADSCrossRefGoogle Scholar
  50. 50.
    M.S.P.M. Rao, Vanadium doped lithium borate glasses: PL and optical absorption studies. Int. J. Lumin. Appl. 1, 148–151 (2012)Google Scholar
  51. 51.
    I. Bratu, I. Ardelean, A. Barbu, D. Maniu, C. Borsa, Spectroscopic and photoacoustic investigation of x(V2O5·CuO)(1–x)[3B2O3·K2O] glasses. J. Mol. Struct. 482–483, 675–678 (1999)ADSCrossRefGoogle Scholar
  52. 52.
    J. Krough-Moe, Interpretation of infrared spectra of boron oxide and alkali borate glasses. Phys. Chem. Glasses 2, 46 (1965)Google Scholar
  53. 53.
    F.H.A. Elbatal, M.A. Marzouk, Y.M. Hamdy, H.A. ElBatal, Optical and FT infrared absorption spectra of 3d transition metal ions doped in NaF–CaF2–B2O3 glass and effects of gamma irradiation. J. Solid State Phys. 2014, 8 (2014)CrossRefGoogle Scholar
  54. 54.
    L. Abello, E. Husson, Y. Repelin, G. Lucazeau, Vibrational spectra and valence force field of crystalline V2O5. Spectrochim. Acta Part A 39, 641–651 (1983)ADSCrossRefGoogle Scholar
  55. 55.
    N. Vedeanu, I. Cozar, R. Stanescu, R. Stefan, D. Vodnar, O. Cozar, Structural investigation of V2O5–P2O5–K2O glass system with antibacterial potential. Bull. Mater. Sci. 39, 697–702 (2016)CrossRefGoogle Scholar
  56. 56.
    H. Miyata, K. Fujii, T. Ono, Y. Kubokawa, T. Ohno, F. Hatayama, Fourier-transform infrared investigation of structures of vanadium oxide on various supports. J. Chem. Soc. Faraday Trans. 83, 675–685 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Glass Research DepartmentNational Research CentreGizaEgypt

Personalised recommendations