Advertisement

Applied Physics A

, 125:631 | Cite as

Investigations on dielectric, electrical and ferroelectric properties of xBaTiO3-(1 − x) NiFe2O4 multiferroic composite ceramics

  • Vandana Kuldeep
  • Oroosa Subohi
  • Rajnish KurchaniaEmail author
Article
  • 58 Downloads

Abstract

This paper reports the synthesis of xBaTiO3-(1 − x)NiFe2O4 (where x = 0.8, 0.7, 0.6, 0.5) (BT-NF) ceramic composites by wet chemical route. Phase formation of the individual components and the BT-NF composite was studied using X-ray diffraction technique. Variation of dielectric constant and dielectric loss as a function of frequency (100 Hz to 1 MHz) and temperature (RT to 300 °C) were also investigated. Dielectric constant and dielectric loss were found to increase with an increase in ferrite content. Two peaks were observed in ε vs T curve, the peak in the lower temperature region ~ 120 °C was attributed to ferroelectric to paraelectric transition and the second peak was due to the presence of ferrite phase in the composite. Conduction mechanism in the composites was studied with the help of Cole–Cole plots to understand the grain and grain boundary contribution to conductivity. P–E loops were measured at room temperature which demonstrates that all composite ceramics are ferroelectric and the increase in ferroelectricty in the ceramics was due to space charge and not an intrinsic phenomenon.

Keywords

Multiferroics Ferroelectrics Dielectrics Ceramics Composites 

Notes

Acknowledgements

Authors are thankful to Director, Maulana Azad National Institute of Technology (MANIT), Bhopal, for providing the infrastructure to carry out this research work.

References

  1. 1.
    V.R. Palkar, D.C. Kundaliya, S.K. Malik, S. Bhattacharya, Magnetoelectricity at room temperature in the Bi0.9−xTbxLa0.1FeO3 system. Phys. Rev. B 69(21), 212102 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    M. Kumari, C. Prakash, R. Chatterjee, Room-temperature magnetoelectric properties of Fe doped BaZr0.05Ti0.95O3. J. Appl. Phys. 113(17), 17D918 (2013)CrossRefGoogle Scholar
  3. 3.
    M.K. Niranjan, J.D. Burton, J.P. Velev, S.S. Jaswal, E.Y. Tsymbal, Magnetoelectric effect at the SrRuO3/BaTiO3 (001) interface: an ab initio study. Appl. Phys. Lett. 95(5), 052501 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    W. Eerenstein, N. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442(7104), 759–765 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multi- ferroic magneto-electric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    J. Ma, J. Hu, Z. Li, C.W. Nan, Recent progress in multiferroic magneto-electric composites: from bulk to thin films. Adv. Mater. 23, 1062–1087 (2011)CrossRefGoogle Scholar
  7. 7.
    A. Gupta, R. Chatterjee, Study of dielectric and magnetic properties of PbZr0.52Ti0.48O3–Mn0.3Co0.6Zn0.4Fe1.7O4 composite. J. Magn. Magn. Mater. 322(8), 1020–1025 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    J. Van den Boomgaard, R.A.J. Born, A sintered magnetoelectric composite material BaTiO3-Ni(Co, Mn) Fe2O4. J. Mater. Sci. 13(7), 1538–1548 (1978)ADSCrossRefGoogle Scholar
  9. 9.
    J.B.N.J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613), 1719–1722 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Q. Zhan, R. Yu, S.P. Crane, H. Zheng, C. Kisielowski, R. Ramesh, Structure and interface chemistry of perovskite-spinel nanocomposite thin films. Appl. Phys. Lett. 89(17), 172902 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    R. Grigalaitis, M.M. Vijatović Petrović, J.D. Bobić, A. Dzunuzovic, R. Sobiestianskas, A. Brilingas, B.D. Stojanović, J. Banys, Dielectric and magnetic properties of BaTiO3–NiFe2O4 multiferroic composites. Ceram. Int. 40(4), 6165–6170 (2014)CrossRefGoogle Scholar
  12. 12.
    R.Y. Zheng, J. Wang, S. Ramakrishna, Electrical and magnetic properties of multiferroic BiFeO3/CoFe2O4 heterostructure. J. Appl. Phys. 104(3), 034106 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Wang, Y. Wang, W. Rao, M. Wang, G. Li, Y. Li, J. Gao, W. Zhou, J. Yu, Dielectric, ferromagnetic and ferroelectric properties of the (1–x)Ba0.8Sr0.2TiO3xCoFe2O4 multiferroic particulate ceramic composites. J. Mater. Sci. Mater. Electron. 23(5), 1064–1071 (2012)CrossRefGoogle Scholar
  14. 14.
    A. Sharma, R.K. Kotnala, N.S. Negi, Observation of multiferroic properties and magnetoelectric effect in (x)CoFe2O4−(1 − x) Pb0.7Ca0.3TiO3 composites. J. Alloy. Compd. 582, 628–634 (2014)CrossRefGoogle Scholar
  15. 15.
    C. Elena Ciomaga, A. Maria Neagu, M. Valentin Pop, M. Airimioaei, S. Tascu, S. Giorgio, C. Galassi, L. Mitoseriu, Ferroelectric and dielectric properties of ferrite-ferroelectric ceramic composites. J. Appl. Phys. 113(7), 074103 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    M. Rawat, K.L. Yadav, Structural, dielectric, ferroelectric and magnetic properties of (x) CoFe2O4-(1 – x) BaTiO3 composite. IEEE Trans. Dielectr. Electr. Insul. 22(3), 1462–1469 (2015)CrossRefGoogle Scholar
  17. 17.
    J.C. Maxwell, Electricity and Magnetism (Oxford University Press, London, 1973)Google Scholar
  18. 18.
    S.S. Chougule, B.K. Chougule, Response of dielectric behaviour on ferroelectric rich (y)Ni0.8Zn0.2Fe2O4 + (1 − y)PZT ME composites. Mater. Chem. Phys. 108(2–3), 408–412 (2008)CrossRefGoogle Scholar
  19. 19.
    B.K. Bammannavar, L.R. Naik, B.K. Chougule, Studies on dielectric and magnetic properties of (x) Ni0.2Co0.8Fe2O4 + (1–x)barium lead zirconate titanate magnetoelectric composites. J. Appl. Phys. 104(6), 064123 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    S. Upadhyay, D. Kumar, O.M. Parkash, Effect of composition on dielectric and electrical properties of the Sr1− xLaxTi1− xCoxO3 system. Bull. Mater. Sci. 19(3), 513–525 (1996)CrossRefGoogle Scholar
  21. 21.
    R. Sharma, P. Poonam, R.P. Tandon, Structural dielectric ferromagnetic ferroelectric and ac conductivity studies of the BaTiO3–CoFe1.8Zn0.2O4 multiferroic particulate composites. Ceram. Int. 40(7), 9027–9036 (2014)CrossRefGoogle Scholar
  22. 22.
    Y. Liu, Y. Wu, D. Li, Y. Zhang, J. Zhang, J. Yang, A study of structural, ferroelectric, ferromagnetic, dielectric properties of NiFe2O4–BaTiO3 multiferroic composites. J. Mater. Sci. Mater. Electron. 24(6), 1900–1904 (2013)CrossRefGoogle Scholar
  23. 23.
    A. Gupta, R. Chatterjee, Dielectric and magnetoelectric properties of BaTiO3–Co0.6Zn0.4Fe1.7Mn0.3O4 composite. J. Eur. Ceram. Soc. 33(5), 1017–1022 (2013)CrossRefGoogle Scholar
  24. 24.
    O. Subohi, C.R. Bowen, M.M. Malik, R. Kurchania, Dielectric spectroscopy and ferroelectric properties of magnesium modified bismuth titanate ceramics. J. Alloy. Compd. 688, 27–36 (2016)CrossRefGoogle Scholar
  25. 25.
    K.K. Patankar, P.D. Dombale, V.L. Mathe, S.A. Patil, R.N. Patil, AC conductivity and magnetoelectric effect in MnFe1.8Cr0.2O4–BaTiO3 composites. Mater. Sci. Eng. B 87(1), 53–58 (2001)CrossRefGoogle Scholar
  26. 26.
    N. Ortega, K. Ashok, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Impedance spectroscopy of multiferroic PbZrxTi1− xO3∕CoFe2O4 layered thin films. Phys. Rev. B 77(1), 014111 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    O. Subohi, S. Rajan, G.S. Kumar, M.M. Malik, R. Kurchania, Impedance analysis and dielectric properties of Ce modified bismuth titanate lead free ceramics synthesized using solution combustion route. J. Mater. Sci. Mater. Electron. 26(11), 9122–9133 (2015)CrossRefGoogle Scholar
  28. 28.
    X. Wu, C. Wei, Y. Kan, P. Yang, Y. Liu, H. Bo, X. Lu, J. Zhu, Multiferroic properties of CoFe2O4/PbZr052Ti0.48O3 composite ceramics. Ferroelectrics 380(1), 48–55 (2009)CrossRefGoogle Scholar
  29. 29.
    J.T.S. Irvine, D.C. Sinclair, A.R. West, Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2, 132–138 (1990)CrossRefGoogle Scholar
  30. 30.
    A. Rotaru, F.D. Morrison, Microstructural and high-temperature impedance spectroscopy study of Ba6MNb9O30 (M = Ga, Sc, In) relaxor dielectric ceramics with tetragonal tungsten bronze structure. Ceram. Int. 42, 11810–11821 (2016)CrossRefGoogle Scholar
  31. 31.
    N. Hirose, A.R. West, Impedance spectroscopy of undoped BaTiO3 ceramics. J. Am. Ceram. Soc. 79(6), 1633–1641 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Vandana Kuldeep
    • 1
  • Oroosa Subohi
    • 2
  • Rajnish Kurchania
    • 1
    Email author
  1. 1.Functional Nanomaterials Laboratory, Department of PhysicsMaulana Azad National Institute of Technology (MANIT)BhopalIndia
  2. 2.Department of PhysicsVisvesvaraya National Institute of Technology (VNIT)NagpurIndia

Personalised recommendations