Applied Physics A

, 125:625 | Cite as

Physical characterization of 5′,5″-dibromo-o-cresolsulfophthalein (BCP) spin-coated thin films and BCP/p-Si based diode

  • A. M. MansourEmail author
  • Mahmoud Nasr
  • H. A. Saleh
  • G. M. Mahmoud


The organic 5′,5″-dibromo-o-cresolsulfophthalein (BCP) compound thin films were deposited simply through spin coating technique from a pre-prepared solution of different molarities. Differential thermal analysis (DSC) and thermogravimetric analysis (TGA) of the starting powder compound were investigated to obtain the thermal stability and phase transformation of the compound. The structure, morphology, and optical properties were analyzed for all the prepared films of different molarities. Structural analyses revealed the nanocrystalline composition of all the prepared thin films. The resulted thin films nanostructure feature is verified by utilizing both the field emission scanning-electron-microscope (FESEM) and the high-resolution transmission electron microscope (HRTEM). Optical absorption exploration of BCP thin films was carried out in the limit of 200–2500 nm wavelength. The results revealed no changes in optical properties with molarity change. Al/p-Si/BCP/Au junction was prepared and investigated electrically in dark conditions and the diode parameters were extracted. The obtained diode can be employed in many applications such as rectifiers, clipper circuits, clamping circuits, reverse current protection circuits, logic gates, voltage multipliers, flexible electronics, and many other optoelectronic applications.


Bromocresolpurple Structure DSC-TGA Current–Voltage Diode 



  1. 1.
    A.A.M. Farag, W.G.G. Osiris, A.H.H. Ammar, A.M. Mansour, Synth. Met. 175, 81 (2013)CrossRefGoogle Scholar
  2. 2.
    R. Farchioni, G. Grosso, Organic Electronic Materials (Springer, Berlin, 2001)CrossRefGoogle Scholar
  3. 3.
    M. Knaapila, Conjugated Polymers and Oligomers: Structural and Soft Matter Aspects (World Scientific Publishing Co Pte Ltd, Singapore, 2017)Google Scholar
  4. 4.
    D. C. Siegmar Roth, in One-Dimensional Metals: Conjugated Polymers, Organic Crystals, Carbon Nanotubes, 2nd edn. (Wiley, Weinheim, 2004)Google Scholar
  5. 5.
    M.R. Grimmett, in Sci (Synth, Houben-Weyl Methods Mol Trans- Form (Thieme, Stuttgart, 2002)Google Scholar
  6. 6.
    J.R. Sheats, J. Mater. Res. 19, 1974 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    W. Brütting, Physics of Organic Semiconductors - Preface (Wiley, Weinheim, 2004)Google Scholar
  8. 8.
    C.R. Newman, C.D. Frisbie, DA da Silva Filho, JL Brédas, PC Ewbank, KR Mann. Chem. Mater. 16, 4436 (2004)CrossRefGoogle Scholar
  9. 9.
    F.M. Schabel, H.E. Skipper, L. White, W.R. Laster, Cancer Res. 21, 700 (1961)Google Scholar
  10. 10.
    Z. Dechun, Org Light Diodes Mater Devices Appl (Woodhead Publishing, Sawston, 2013), pp. 114–142Google Scholar
  11. 11.
    J.D. Myers, J. Xue, Polym. Rev. 52, 1 (2012)CrossRefGoogle Scholar
  12. 12.
    A.Y. Al-Ahmad, M.F. Al-Mudhaffer, H.A. Badran, C.A. Emshary, Opt. Laser Technol. 54, 72 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    S. Koçak, B. Aslişen, Sensors Actuators. B Chem. 196, 610 (2014)Google Scholar
  14. 14.
    P.C. Ray, P.K. Das, J. Phys. Chem. 99, 14414 (1995)CrossRefGoogle Scholar
  15. 15.
    C.A. Walsh, D.M. Burland, V.Y. Lee, R.D. Miller, B.A. Smith, R.J. Twieg, W. Volksen, Macromolecules 26, 3720 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Wang, L.L. Tong, Sensors Actuators. B Chem. 150, 43 (2010)Google Scholar
  17. 17.
    S. Choudhury, R. Chitra, J.V. Yakhmi, Thin Solid Films 440, 240 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    S. Shrestha, R.J. Mascarenhas, O.J. D’Souza, A.K. Satpati, Z. Mekhalif, A. Dhason, P. Martis, J. Electroanal. Chem. 778, 32 (2016)CrossRefGoogle Scholar
  19. 19.
    A.M. Mansour, Silicon, 1 (2018) (in press)Google Scholar
  20. 20.
    A.A.M. Farag, F.S. Terra, G.M. Mahmoud, A.M. Mansour, J. Alloys Compd. 481, 427 (2009)CrossRefGoogle Scholar
  21. 21.
    F.S. Terra, A.A. Higazy, G.M. Mahmoud, A.M. Mansour, Indian J. Phys. 84, 265 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    E.M. El-Menyawy, A.M. Mansour, N.A. El-Ghamaz, S.A. El-Khodary, Phys. B Condens. Matter 413, 31 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    A.M. Mansour, F.M.A. Taweel, R.A.N. Abu El-Enein, E.M. El-Menyawy, J. Electron. Mater. 46, 6957 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    M. Husham, Z. Hassan, A.M. Selman, N.K. Allam, Sen. Actuators A Phys. 230, 9 (2015)CrossRefGoogle Scholar
  25. 25.
    D. Gui, L. Ji, A. Muhammad, W. Li, W. Cai, Y. Li, X. Li, X. Wu, P. Lu, J. Phys. Chem. Lett. 9, 751 (2018)CrossRefGoogle Scholar
  26. 26.
    R. Freitag, J. Conradie, J. Chem. Educ. 90, 1692 (2013)CrossRefGoogle Scholar
  27. 27.
    A.M. El Nahrawy, A.M. Mansour, A.B. Abou Hammad, A.R. Wassel, Mater. Res. Express 6, 016404 (2019)ADSCrossRefGoogle Scholar
  28. 28.
    A.A. Azab, E.M. El-Menyawy, A.M. Mansour, G.M. Mahmoud, F.S. Terra, Recent Patents. Mater. Sci. 11, 41 (2018)Google Scholar
  29. 29.
    A.A.M. Farag, A.M. Mansour, A.H. Ammar, M.A. Rafea, A.M. Farid, J. Alloys Compd. 513, 404 (2012)CrossRefGoogle Scholar
  30. 30.
    A.A.M. Farag, A.M. Mansour, A.H.H. Ammar, M.A.A. Rafea, Synth. Met. 161, 2135 (2011)CrossRefGoogle Scholar
  31. 31.
    I.M. El Radaf, M. Nasr, A.M. Mansour, Mater. Res. Express 5, 015904 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    N. Hassan, A.M.M. Mansour, N. Roushdy, A.A.M.A.M. Farag, W.G.G. Osiris, Optik (Stuttg). 158, 1255 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    A.A.M. Farag, H.S. Soliman, A.A. Atta, Synth. Met. 161, 2759 (2012)CrossRefGoogle Scholar
  34. 34.
    A.M. Mansour, A.A.M. Farag, Organo Opto Electr. An Int. J. 35, 29 (2016)Google Scholar
  35. 35.
    A.M. Mansour, I.S. Yahia, I.M.E. Radaf, Mater. Res. Express 5, 076406 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    A.M. El Nahrawy, A.B.A. Hammad, A.M. Youssef, A.M. Mansour, A.M. Othman, Appl. Phys. A Mater. Sci. Process. 125, 46 (2019)ADSCrossRefGoogle Scholar
  37. 37.
    I.M. El Radaf, A.M. Mansour, G.B. Sakr, J. Semicond. 39, 124010 (2018)CrossRefGoogle Scholar
  38. 38.
    M. Nasr, A. M. Mansour, and I. M. El Radaf, Mater. Res. Express 6, (2019).Google Scholar
  39. 39.
    A.A.M. Farag, F.S. Terra, G.M.M. Fahim, A.M. Mansour, Met. Mater. Int. 18, 509 (2012)CrossRefGoogle Scholar
  40. 40.
    G. Parish, R.A. Kennedy, G.A. Umana-Membreno, B.D. Nener, Solid. State. Electron. 52, 171 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    Y. Huang, X.D. Chen, S. Fung, C.D. Beling, C.C. Ling, J. Appl. Phys. 94, 5771 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    A.A.M. Farag, F.S. Terra, A. Ashery, G.M.M. Fahim, A.M. Mansour, Indian J. Pure Appl. Phys. 56, 203 (2018)Google Scholar
  43. 43.
    A.A.M. Farag, F.S. Terra, A. Ashery, A.M. Mansour, Optoelectron. Adv. Mater. Rapid Commun. 11, 82 (2017)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • A. M. Mansour
    • 1
    • 2
    Email author
  • Mahmoud Nasr
    • 1
  • H. A. Saleh
    • 3
  • G. M. Mahmoud
    • 1
  1. 1.Solid-State Electronics Laboratory, Physics Research Division, Solid-State Physics DepartmentNational Research CentreGizaEgypt
  2. 2.Center of Microelectronics in ProvenceGardanneFrance
  3. 3.Electron Microscope and Thin Films Department, Physical Research DivisionNational Research CentreGizaEgypt

Personalised recommendations