Applied Physics A

, 125:632 | Cite as

Oxidation of carbazole by shape-controllable Cu2O on MWW catalysis

  • Narges Elmi Fard
  • Reza FazaeliEmail author
  • Mohammad Yousefi
  • Shahrzad Abdolmohammadi


In the present study, various shapes of copper (I) oxide (Cu2O) such as spherical, cubic, leaf, frames, cage, branch, multihedral, octahedral, flower, and tetrapod were synthesized and characterized by different methods. The oxidation of heterocycle carbazole (CBZ) in mild conditions was studied by various shapes of Cu2O. Octahedral with the lowest surface area 1.65 and tetrapod with a high surface area 39.29 (m2g−1) had oxidation efficiencies of 23.44% and 96.49% for CBZ at 4 h, respectively. Zeolite MWW was synthesized by microwave and hydrothermal method on which Cu2O tetrapod was loaded via wet impregnation method. The results indicated that Cu2O tetrapod/MWW composite considerably outperformed Cu2O tetrapod. The oxidation of CBZ by Cu2O tetrapod/MWW composite for 75 min was 99.99%. Cu2O tetrapod/MWW composite was shown to be an efficient catalyst for the oxidation of nitrogen heterocycles.


Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    N.F. Nejad, E. Shams, M.K. Amini, J.C. Bennett, Synthesis of magnetic mesoporous carbon and its application for adsorption of dibenzothiophene. Fuel Process. Technol. 106, 376–384 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Zarrabi, M.H. Entezari, Modification of C/TiO2@MCM-41 with nickel nanoparticles for photocatalytic desulfurization enhancement of a diesel fuel model under visible light. J. Colloid Interface Sci. 457, 353–359 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    X. Hong, K. Tang, Absorptive denitrogenation of diesel oil using a modified NaY molecular sieve. Petrol. Sci. Technol. 33, 1471–1478 (2015)CrossRefGoogle Scholar
  4. 4.
    Y.-C. Wu, X.-F. Yang, L. Hao, Improved oxygen optical sensing performance from Re(I) complexdoped MCM-41 composite samples by incorporating oxadiazole ringinto diamine ligand: synthesis, characterization and sensing response. Sensor. Actuat. B-Chem. 224, 1113–1120 (2017)CrossRefGoogle Scholar
  5. 5.
    X.R. Zhou, H. Ma, X.-M. Fu, C.-B. Yao, J.-Q. Xiao, Catalytic oxidation of carbazole using t-butyl hydroperoxide over molybdenum catalyst. J. Fuel. Chem. Technol. 38, 75–79 (2010)CrossRefGoogle Scholar
  6. 6.
    D.P. Chakraborty, S. Roy, Carbazole Alkaloids IV, in Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products, vol 85 (Springer, Vienna, 2003), pp. 125–230Google Scholar
  7. 7.
    M. Bachrach, T.J. Marks, J.M. Notestein, Understanding the Hydrodenitrogenation of Heteroaromatics on a Molecular Level. ACS. Catal. 6, 1455–1476 (2016)CrossRefGoogle Scholar
  8. 8.
    Q. Meng, A. Duan, Ch. Xu, Zh Zhao, J. Li, B. Wang, C. Liu, D. Hu, H. Lia, Y. Lia, Synthesis of novel hierarchically porous NiMo/ZSM-5-KIT-5 catalysts and their superior performance in hydrodenitrogenation of quinolone. Catal. Sci. Technol. 8, 5062–5072 (2018)CrossRefGoogle Scholar
  9. 9.
    C.S. Raghuveer, J.W. Thybaut, G.B. Marin, Pyridine hydrodenitrogenation kinetics over a sulphided NiMo/γ-Al2O3 catalyst. Fuel 171, 253–262 (2016)CrossRefGoogle Scholar
  10. 10.
    H. Zhang, H. Song, Study of adsorptive denitrogenation of diesel fuel over mesoporous molecular sieves based on breakthrough curves. Ind. Eng. Chem. Res. 51, 16059–16065 (2012)CrossRefGoogle Scholar
  11. 11.
    D. Carnaroglio, E.C. Gaudino, S. Mantegna, E.M. Moreira, A. Vicente de Castro, E.M. Flores, G.J.E. Cravotto, Study of adsorptive denitrogenation of diesel fuel over mesoporous molecular sieves based on breakthrough curves. Ultrasound-assisted oxidative desulfurization/denitrification of liquid fuels with solid oxidants. Energy Fuels. 28, 1854–1859 (2014)CrossRefGoogle Scholar
  12. 12.
    Z. Hu, H.L. Yu, Oxidative denitrification of diesel by phosphomolybdic acid/hydrogen peroxide. Pet. Sci. Technol. 33, 968–974 (2015)CrossRefGoogle Scholar
  13. 13.
    E.M. Flanigen, J.H. Jansen, Introduction to zeolite science and practice (Elsevier, Van Bekkum, 1991)Google Scholar
  14. 14.
    M.E. Davis, R.F. Lobo, Zeolite and molecular sieve synthesis. Chem. Mater. 4, 756–768 (1992)CrossRefGoogle Scholar
  15. 15.
    P. Wu, T. Tatsumi, T. Komatsu, T. Yashima, A novel titanosilicate with MWW structure. I. Hydrothermal synthesis, elimination of extra framework titanium, and characterizations. J. Phys. Chem. B. 105, 2897–2905 (2001)CrossRefGoogle Scholar
  16. 16.
    P. Wu, T. Tatsumi, Preparation of B-free Ti-MWW through reversible structural conversion. Chem. Commun. (10), 1026–1027 (2002)Google Scholar
  17. 17.
    N. Liu, Y. Liu, W. Xie, L. Wang, M. He, P. Wu, Hydrothermal synthesis of boron-free Ti-MWW with dual structure-directing agents. Stud. Surf. Sci. Catal. 170, 464–469 (2007)CrossRefGoogle Scholar
  18. 18.
    M. Rutkowska, U. Diaz, A.E. Palomares, L. Chmielarz, Cu and Fe modified derivatives of 2D MWW-type zeolites (MCM-22, ITQ-2 and MCM-36) as new catalysts for DeNOx process. Appl. Catal. B 168–169, 531–539 (2015)CrossRefGoogle Scholar
  19. 19.
    D. Dodoo-Arhin, Nanostructured copper oxides: production and applications. PhD thesis, Department of Materials Engineering and Industrial Technologies, University of Trento (2010)Google Scholar
  20. 20.
    X.-L. Luo, M.-J. Wang, D.-S. Yang, J. Yang, Y-Sh Chen, Hydrothermal synthesis of morphology controllable Cu2O and their catalysis in thermal decomposition of ammonium perchlorate. J. Ind. Eng. Chem. 32, 313–318 (2015)CrossRefGoogle Scholar
  21. 21.
    X. Lan, J. Zhang, H. Gao, T. Wang, Morphology-controlled hydrothermal synthesis and growth mechanism of microcrystal Cu2O. Cryst. Eng. Comm. 13, 633–636 (2011)CrossRefGoogle Scholar
  22. 22.
    Ch-H Kuo, M.H. Huang, Fabrication of truncated rhombic dodecahedral Cu2O nanocages and nanoframes by particle aggregation and acidic etching. J. Am. Chem. Soc. 130, 12815–12820 (2008)CrossRefGoogle Scholar
  23. 23.
    H. Xu, W. Wang, W. Zhu, Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties. J. Phys. Chem. B. 110, 13829–13834 (2006)CrossRefGoogle Scholar
  24. 24.
    Y. Zhang, B. Deng, T. Zhang, D. Gao, A.-W. Xu, Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity. J. Phys. Chem. C 114, 5073–5079 (2010)CrossRefGoogle Scholar
  25. 25.
    T. Aditya, J. Jana, N.K. Singh, A. Pal, T. Pal, Remarkable facet selective reduction of 4-nitrophenol by morphologically tailored (111) faceted Cu2O nanocatalyst. ACS Omega. 2, 1968–1984 (2017)CrossRefGoogle Scholar
  26. 26.
    X. Li, J. Wang, Y. Zhang, M. Cao, Efficient visible-light photocatalytic performance of cuprous oxide porous nanosheet arrays. Mater. Res. Bull. 70, 728–734 (2015)CrossRefGoogle Scholar
  27. 27.
    S.H. Cho, J. Yoon, S. Chang, Intramolecular oxidative C–N bond formation for the synthesis of carbazoles: comparison of reactivity between the copper-catalyzed and metal-free conditions. J. Am. Chem. Soc. 113, 5996–6005 (2011)CrossRefGoogle Scholar
  28. 28.
    S. Song, R. Rao, H. Yang, A. Zhang, Cu2O/MWCNTs prepared by spontaneous redox: growth mechanism and superior catalytic activity. J. Phys. Chem. C 114, 13998–14003 (2010)CrossRefGoogle Scholar
  29. 29.
    B. White, M. Yin, A. Hall, D. Le, S. Stolbov, T. Rahman, N. Turro, S. O’Brien, Complete CO oxidation over Cu2O nanoparticles supported on silica gel. Nano Lett. 6, 2095–2098 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Wang, R.T. Yang, Desulfurization of jet fuel JP-5 light fraction by MCM-41 and SBA-15 supported cuprous oxide for fuel cell applications. Ind. Eng. Chem. Res. 48, 142–147 (2009)CrossRefGoogle Scholar
  31. 31.
    S.H. Ammar, S.A. Jaafar, Adsorption kinetic and isotherms studies of thiophene removal from model fuel on activated carbon supported copper oxide. I. J. Chem. Pet. Eng. 18, 83–93 (2017)Google Scholar
  32. 32.
    J. Ma, K. Wang, L. Li, T. Zhang, Y. Kong, S. Komarneni, Visible-light photocatalytic decolorization of Orange II on Cu2O/ZnO nanocomposites. Ceram. Int. 41, 2050–2056 (2015)CrossRefGoogle Scholar
  33. 33.
    H. Huang, J. Zhang, L. Jiang, Zh Zang, Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B. J. Alloys Compd. 718, 112–115 (2017)CrossRefGoogle Scholar
  34. 34.
    Y. Wu, X. Ren, Y. Lu, J. Wang, Crystallization and morphology of zeolite MCM-22 influenced by various conditions in the static hydrothermal synthesis. Microporous Mesoporous Mater. 112, 138–146 (2008)CrossRefGoogle Scholar
  35. 35.
    R. Raciti, R. Bahariqushchi, C. Summonte, A. Aydinli, A. Terrasi, S. Mirabella, Optical bandgap of semiconductor nanostructures: methods for experimental data analysis. J. Appl. Phys. 121, 234304 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    W. Xie, Y. Zheng, S. Zhao, J. Yang, Y. Liu, P. Wu, Selective oxidation of pyridine to pyridine N-oxide with hydrogen peroxide over Ti-MWW catalyst. Catal. Today 157, 114–118 (2010)CrossRefGoogle Scholar
  37. 37.
    X. Si, S. Cheng, Y. Lu, G. Gao, M.-Y. He, Oxidative desulfurization of model oil over Au/Ti-MWW. Catal. Lett. 122, 321–324 (2008)CrossRefGoogle Scholar
  38. 38.
    K. Leng, Y. Sun, X. Zhang, M. Yu, W. Xu, Ti-modified hierarchical mordenite as highly active catalyst for oxidative desulfurization of dibenzothiophene. Fuel 174, 9–16 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Chemical Engineering, Faculty of Engineering, South Tehran BranchIslamic Azad UniversityTehranIran
  3. 3.Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey BranchIslamic Azadmehr UniversityTehranIran
  4. 4.Department of Chemistry, East Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations