Applied Physics A

, 125:626 | Cite as

Facile synthesis of CuxZn1−xFe2O4 nanoparticles and their thermo-physical properties evaluation

  • Tareq ManzoorEmail author
  • Tariq Javed
  • Ghulam Mustafa
  • Habib Ullah Manzoor Ahmed
  • Abdul Razzaq


Since the advent of material science, nanomaterials have been the most attractive and alluring research domain of nanotechnology with a variety of applications. Considering the significance of nanomaterials specifically in industrial progressions, the present work demonstrates facile synthesis approach of copper–zinc ferrite nanoparticles and their thermo-physical characterization and evaluation. Analytical grade chemicals were used to synthesize the respective nanoparticles employing the co-precipitation method, with the base solution of NaOH to maintain pH of the solution within range of 12–14. A series of nanoparticles were synthesized varying the amount of copper and zinc precursors, and their thermal and physical properties were evaluated using various analytical tools including XRD (X-ray diffraction), SEM (Scanning Electron Microscope), FTIR (Fourier transform infrared spectroscopy) and thermal constant analyzer.



  1. 1.
    J.E. Contreras, E.A. Rodriguez, J. Taha-Tijerina, Electr. Power Syst. Res. 143, 573 (2017)CrossRefGoogle Scholar
  2. 2.
    M. Radetić, J. Photochem. Photobiol. C Photochem. Rev. 16, 62 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Nafisi, H.I. Maibach, Cosmet. Sci. Technol. Theor. Princ. Appl., 337 (2017). CrossRefGoogle Scholar
  4. 4.
    X. He, H. Deng, H.M. Hwang, J. Food Drug Anal. 27, 1 (2019)Google Scholar
  5. 5.
    R. Keçili, S. Büyüktiryaki, C.M. Hussain, Trends Anal. Chem. 110, 259 (2019)CrossRefGoogle Scholar
  6. 6.
    C.S. Digesu, S.C. Hofferberth, M.W. Grinstaff, Y.L. Colson, Thorac. Surg. Clin. 26, 215 (2016)CrossRefGoogle Scholar
  7. 7.
    R. Olawoyin, Saf. Sci. 110, 214 (2018)CrossRefGoogle Scholar
  8. 8.
    S. Tyagi, D. Rawtani, N. Khatri, M. Tharmavaram, J. Water Process Eng. 21, 84 (2018)CrossRefGoogle Scholar
  9. 9.
    S. Ali, A. Razzaq, and S.I. In, Catal. Today 335, 1 (2018)Google Scholar
  10. 10.
    A. Razzaq, C.A. Grimes, S.I. In, Carbon 98, 537 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Rana, R. Fangueiro, V.K. Thakur, M. Joshi, S. Thomas, B. Fiedler, J. Nanomater. 2017, 1 (2017)CrossRefGoogle Scholar
  12. 12.
    F. Semari, F. Dahmane, N. Baki, Y. Al-Douri, S. Akbudak, G. Uğur, A. Bouhemadou, R. Khenata, C.H. Voon, Chin. J. Phys. 56, 567 (2018)Google Scholar
  13. 13.
    Y. Al-Douri, A.A. Odeh, M.R. Johan, Z.Z. Chowdhury, R.F. Rafique, A.H. Reshak, C.H. Voon, Int. J. Electrochem. Sci. 13, 6693 (2018)CrossRefGoogle Scholar
  14. 14.
    A. Abu Odeh, Y. Al-Douri, R.M. Ayub, A.S. Ibraheam, J. Alloys Compd. 686, 883 (2016)Google Scholar
  15. 15.
    A.A. Odeh, Y. Al-Douri, R.M. Ayub, M. Ameri, A. Bouhemadou, D. Prakash, K.D. Verma, Appl. Phys. A Mater. Sci. Process. 122(10), 1 (2016)Google Scholar
  16. 16.
    A.A. Odeh, Y. Al-Douri, M. Ameri, A. Bouhemadou, Indian J. Phys. 92, 695 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    A.A. Odeh, Y. Al-Douri, C.H. Voon, R. Mat Ayub, S.C.B. Gopinath, R.A. Odeh, M. Ameri, A. Bouhemadou, Microchim. Acta 184, 2211 (2017)Google Scholar
  18. 18.
    A. Bedjaoui, A. Bouhemadou, S. Aloumi, R. Khenata, S. Bin-Omran, Y. Al-Douri, F. Saad Saoud, S. Bensalem, Solid State Sci. 70, 21 (2017)Google Scholar
  19. 19.
    B. Abderrahim, M. Ameri, D. Bensaid, Y. Azaz, B. Doumi, Y. Al-Douri, F. Benzoudji, J. Supercond. Nov. Magn. 29, 277 (2016)CrossRefGoogle Scholar
  20. 20.
    M. Rabah, B. Abbar, Y. Al-Douri, B. Bouhafs, B. Sahraoui, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 100, 163 (2003)Google Scholar
  21. 21.
    A. Bouhemadou, K. Haddadi, S. Bin-Omran, R. Khenata, Y. Al-Douri, S. Maabed, Mater. Sci. Semicond. Process. 40, 64 (2015)CrossRefGoogle Scholar
  22. 22.
    A. Abdiche, R. Baghdad, R. Khenata, R. Riane, Y. Al-Douri, M. Guemou, S. Bin-Omran, Phys. B Condens. Matter 407, 426 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    O. Boudrifa, A. Bouhemadou, N. Guechi, S. Bin-Omran, Y. Al-Douri, R. Khenata, J. Alloys Compd. 618, 84 (2015)CrossRefGoogle Scholar
  24. 24.
    A.V. Rane, K. Kanny, V.K. Abitha, S. Thomas, Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites (Elsevier Ltd.,Amsterdam, 2018).CrossRefGoogle Scholar
  25. 25.
    J. Zhang, J.M. Song, H.L. Niu, C.J. Mao, S.Y. Zhang, Y.H. Shen, Sens. Actuators B Chem. 221, 55 (2015)CrossRefGoogle Scholar
  26. 26.
    A. Šutka, K.A. Gross, Sens. Actuators B Chem. 222, 95 (2016)CrossRefGoogle Scholar
  27. 27.
    M. Amiri, M. Salavati-Niasari, A. Akbari, Adv. Colloid Interface Sci. 265, 29 (2019)CrossRefGoogle Scholar
  28. 28.
    B.I. Kharisov, H.V.R. Dias, O.V. Kharissova, Arab. J. Chem. (2014).
  29. 29.
    E. Casbeer, V.K. Sharma, X.Z. Li, Sep. Purif. Technol. 87, 1 (2012)CrossRefGoogle Scholar
  30. 30.
    K.K. Kefeni, T.A.M. Msagati, B.B. Mamba, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 215, 37 (2017)Google Scholar
  31. 31.
    K.K. Kefeni, B.B. Mamba, T.A.M. Msagati, Sep. Purif. Technol. 188, 399 (2017)CrossRefGoogle Scholar
  32. 32.
    A. Samavati, M.K. Mustafa, A.F. Ismail, M.H.D. Othman, M.A. Rahman, Mater. Express 6, 473 (2017)CrossRefGoogle Scholar
  33. 33.
    M. Ben Ali, K. El Maalam, H. El Moussaoui, O. Mounkachi, M. Hamedoun, R. Masrour, E.K. Hlil, A. Benyoussef, J. Magn. Magn. Mater. 398, 20 (2016)Google Scholar
  34. 34.
    U.B. Shinde, S.E. Shirsath, S.M. Patange, S.P. Jadhav, K.M. Jadhav, V.L. Patil, Ceram. Int. 39, 5227 (2013)CrossRefGoogle Scholar
  35. 35.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, J. Mater. Sci. Mater. Electron. 27, 11691 (2016)CrossRefGoogle Scholar
  36. 36.
    K.M. Batoo, M.S. Ansari, Nanoscale Res. Lett. 7, 1 (2012)CrossRefGoogle Scholar
  37. 37.
    H. Harzali, F. Saida, A. Marzouki, A. Megriche, F. Baillon, F. Espitalier, A. Mgaidi, J. Magn. Magn. Mater. 419, 50 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    Q.J. Han, D.H. Ji, G.D. Tang, Z.Z. Li, X. Hou, W.H. Qi, R.R. Bian, S.R. Liu, Phys. Status Solidi Appl. Mater. Sci. 209, 766 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    J.A. Gomes, M.H. Sousa, F.A. Tourinho, J. Mestnik-Filho, R. Itri, J. Depeyrot, J. Magn. Magn. Mater. 289, 184 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    P.B.S. Thomas, J. Theor. Appl. Phys. 8, 123 (2014)ADSGoogle Scholar
  41. 41.
    I.H. Gul, A. Maqsood, J. Alloy Compd. 465, 227 (2008)CrossRefGoogle Scholar
  42. 42.
    A. Kelly, K.M. Knowles, Appendix 3 Interplanar Spacings and Interplanar Angles (Wiley, New York, 2012).Google Scholar
  43. 43.
    P.L. Hariani, M. Faizal, R. Ridwan, M. Marsi, D. Setiabudidaya, Int. J. Environ. Sci. Dev. 4, 336 (2013)CrossRefGoogle Scholar
  44. 44.
    M. Genc, B. Inci, Z.K. Genc, C.A. Canbay, M. Sekerci, Bull. Mater. Sci. 38, 343 (2015)CrossRefGoogle Scholar
  45. 45.
    S. Suresh, S. Rangarajan, S. Bera, R. Krishnan, S. Kalavathi, S. Velmurugan, Thin Solid Films 612, 250 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tareq Manzoor
    • 1
    Email author
  • Tariq Javed
    • 2
  • Ghulam Mustafa
    • 3
  • Habib Ullah Manzoor Ahmed
    • 4
  • Abdul Razzaq
    • 5
  1. 1.Energy Research CentreCOMSATS University Islamabad, Lahore CampusLahorePakistan
  2. 2.Department of Mechanical EngineeringCOMSATS UniversitySahiwalPakistan
  3. 3.Departement of BiotechnologyUAFFaisalabadPakistan
  4. 4.Department of Electrical EngineeringUET, Lahore Faisalabad CampusFaisalabadPakistan
  5. 5.Department of Chemical EngineeringCOMSATS University IslamabadLahore CampusPakistan

Personalised recommendations