Advertisement

Applied Physics A

, 125:630 | Cite as

Development of silicon nitride-based nanocomposites with multicolour photoluminescence

  • Yury V. RyabchikovEmail author
  • Anatolii Lukianov
  • Bohdan Oliinyk
  • Tetyana Nychyporouk
  • Vladimir Lysenko
Article
  • 61 Downloads

Abstract

Silicon-rich nitride nanocomposites with stable multicolour photoluminescence (PL) are developed in this work. Firstly, a single PL band can be adjusted in the visible spectral range. Secondly, simultaneous emission of an additional PL band is achieved due to boron-doping of the nanocomposites. Impact of thermal annealing of the silicon nitride films in different atmospheres at various temperatures on their PL spectra is studied. Processes responsible for multicolour emission in the boron-doped nanocomposites are discussed. The developed nanocomposites can be further applied for nanothermometry or biosensing applications. They can be also used for synthesis of silicon nanoparticles with multicolour PL.

Graphic abstract

Intense violet-based multicolour photoluminescence of silicon nitride nanocomposite with tunable emission position is achieved.

Notes

Acknowledgements

Yu.V.R. acknowledges the European Regional Development Fund and the state budget of the Czech Republic (Project BIATRI: CZ.02.1.01/0.0/0.0/15_003/0000445) and the Ministry of Education, Youth and Sports (Programs NPU I-Project no. LO1602).

References

  1. 1.
    Yu.V Ryabchikov, Facile laser synthesis of multimodal composite silicon/gold nanoparticles with variable chemical composition. J. Nanopart. Res. 21(4), 85 (2019).  https://doi.org/10.1007/s11051-019-4523-4 ADSCrossRefGoogle Scholar
  2. 2.
    P. Zhu, K. Tan, Q. Chen, J. Xiong, L. Gao, Origins of efficient multiemission luminescence in carbon dots. Chem. Mater. 31, 4732–4742 (2019).  https://doi.org/10.1021/acs.chemmater.9b00870 CrossRefGoogle Scholar
  3. 3.
    D. Ruiz, B. del Rosal, M. Acebrón, C. Palencia, C. Sun, J. Cabanillas-González, M. López-Haro, A.B. Hungría, D. Jaque, B.H. Juarez, Ag/Ag2S nanocrystals for high sensitivity near-infrared luminescence nanothermometry. Adv. Funct. Mat. 27, 1604629 (2017).  https://doi.org/10.1002/adfm.201604629 CrossRefGoogle Scholar
  4. 4.
    S. Uchiyama, C. Gota, Luminescent molecular thermometers for the ratiometric sensing of intracellular temperature. Rev. Anal. Chem. 36, 20160021 (2016).  https://doi.org/10.1515/revac-2016-0021 CrossRefGoogle Scholar
  5. 5.
    J. Yang, Y. Liu, Y. Zhao, Z. Gong, M. Zhang, D. Yan, H. Zhu, C. Liu, C. Xu, H. Zhang, Ratiometric afterglow nanothermometer for simultaneous in situ bioimaging and local tissue temperature sensing. Chem. Mater. 29, 8119–8131 (2017).  https://doi.org/10.1021/acs.chemmater.7b01958 CrossRefGoogle Scholar
  6. 6.
    C. Wang, H. Lin, Z. Xu, Y. Huang, M.G. Humphrey, C. Zhang, Tunable carbon-dot-based dual-emission fluorescent nanohybrids for ratiometric optical thermometry in living cells. ACS Appl. Mater. Inter. 8, 6621–6628 (2016).  https://doi.org/10.1021/acsami.5b11317 CrossRefGoogle Scholar
  7. 7.
    J.-R. Macairan, D.B. Jaunky, A. Piekny, R. Naccache, Intracellular ratiometric temperature sensing using fluorescent carbon dots. Nanoscale Adv. 1, 105–113 (2019).  https://doi.org/10.1039/C8NA00255J ADSCrossRefGoogle Scholar
  8. 8.
    L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, A. Bednarkiewicz, A broadening temperature sensitivity range with a core–shell YbEr@YbNd double ratiometric optical nanothermometer. Nanoscale 8, 5037–5042 (2016).  https://doi.org/10.1039/C5NR08223D ADSCrossRefGoogle Scholar
  9. 9.
    O.L.A. Savchuk, J.J. Carvajal, J. Massons, C. Cascales, M. Aguiló, F. Díaz, Novel low-cost, compact and fast signal processing sensor for ratiometric luminescent nanothermometry. Sensor Actuat A-Phys 250, 87–95 (2016).  https://doi.org/10.1016/j.sna.2016.08.031 CrossRefGoogle Scholar
  10. 10.
    M. Xu, X. Zou, Q. Su, W. Yuan, C. Cao, Q. Wang, X. Zhu, W. Feng, F. Li, Ratiometric nanothermometer in vivo based on triplet sensitized upconversion. Nat. Commun. 9, 2698 (2018).  https://doi.org/10.1038/s41467-018-05160-1 ADSCrossRefGoogle Scholar
  11. 11.
    E.N. Cerón, D.H. Ortgies, B. del Rosal, F. Ren, A. Benayas, F. Vetrone, D. Ma, F. Sanz-Rodríguez, J.G. Solé, D. Jaque, E.M. Rodríguez, Hybrid nanostructures for high-sensitivity luminescence nanothermometry in the second biological window. Adv. Mater. 27, 4781–4787 (2015).  https://doi.org/10.1002/adma.201501014 CrossRefGoogle Scholar
  12. 12.
    S. Han, X. Qin, Z. An, Y. Zhu, L. Liang, Y. Han, W. Huang, X. Liu, Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water. Nat. Comm. 7, 13059 (2016).  https://doi.org/10.1038/ncomms13059 ADSCrossRefGoogle Scholar
  13. 13.
    D. Yue, Q. Li, W. Lu, Q. Wang, M. Wang, C. Li, L. Jin, Y. Shi, Z. Wang, J. Hao, Multi-color luminescence of uniform CdWO4 nanorods through Eu3+ ion doping. J. Mater. Chem. C 3, 2865–2871 (2015).  https://doi.org/10.1039/C4TC02409E CrossRefGoogle Scholar
  14. 14.
    S. Goderski, M. Runowski, S. Lis, Synthesis of luminescent KY3F10 nanopowder multi-doped with lanthanide ions by a co-precipitation method. J. Rare Earths 34, 808–813 (2016).  https://doi.org/10.1016/S1002-0721(16)60098-4 CrossRefGoogle Scholar
  15. 15.
    J. Sarkar, S. Mondal, S. Panja, I. Dey, A. Sarkar, U.K. Ghorai, Multicolour tuning and perfect white emission from novel PbWO4:Yb3+:Ho3+:Tm3+ nanophosphor. Mater. Res. Bull. 112, 314–322 (2019).  https://doi.org/10.1016/j.materresbull.2018.12.009 CrossRefGoogle Scholar
  16. 16.
    P. Singh, P.K. Shahi, S.K. Singh, A.K. Singh, M.K. Singh, R. Prakash, S.B. Rai, Lanthanide doped ultrafine hybrid nanostructures: multicolour luminescence, upconversion based energy transfer and luminescent solar collector applications. Nanoscale 9, 696–705 (2017).  https://doi.org/10.1039/C6NR07250J CrossRefGoogle Scholar
  17. 17.
    B. Li, X. Huang, Multicolour tunable luminescence of thermal-stable Ce3+/Tb3+/Eu3+-triactivated Ca3Gd(GaO)3(BO3)4 phosphors via Ce3+ → Tb3+ → Eu3+ energy transfer for near-UV WLEDs applications. Ceram. Int. 44, 4915–4923 (2018).  https://doi.org/10.1016/j.ceramint.2017.12.082 CrossRefGoogle Scholar
  18. 18.
    V. Kumar, A. Pandey, O.M. Ntwaeaborwa, V. Dutta, H.C. Swart, Structural and luminescence properties of Eu3+/Dy3+ embedded sodium silicate glass for multicolour emission. J. Alloy Compd. 708, 922–931 (2017).  https://doi.org/10.1016/j.jallcom.2017.03.061 CrossRefGoogle Scholar
  19. 19.
    D. Alexander, K. Thomas, S. Sisira, L.A. Jacob, S. Gopi, A. Kumar, P.R. Biju, N.V. Unnikrishnan, C. Joseph, Eu3+ activated terbium oxalate nanocrystals: a novel luminescent material with delayed concentration quenching and tunable multicolour emission. Opt. Mater. 86, 366–375 (2018).  https://doi.org/10.1016/j.optmat.2018.10.013 ADSCrossRefGoogle Scholar
  20. 20.
    Yu.V. Ryabchikov, V. Lysenko, T. Nychyporuk, Enhanced thermal sensitivity of silicon nanoparticles embedded in (nano–Ag)/SiNx for luminescent thermometry. J. Phys. Chem. C 118, 12515 (2014).  https://doi.org/10.1021/jp411887s CrossRefGoogle Scholar
  21. 21.
    Yu.V. Ryabchikov, S.A. Alekseev, V. Lysenko, G. Bremond, J.-M. Bluet, Photoluminescence thermometry with alkyl–terminated silicon nanoparticles dispersed in low–polar liquids. Phys. Status Solidi R 7(6), 414 (2013).  https://doi.org/10.1002/pssr.201307093 CrossRefGoogle Scholar
  22. 22.
    Yu.V Ryabchikov, S.A. Alekseev, V. Lysenko, G. Bremond, J.-M. Bluet, Photoluminescence of silicon nanoparticles chemically modified by alkyl groups and dispersed in low–polar liquids. J. Nanopart. Res. 15(4), 1535 (2013).  https://doi.org/10.1007/s11051-013-1535-3 ADSCrossRefGoogle Scholar
  23. 23.
    E.A. Konstantinova, Yu.V Ryabchikov, L.A. Osminkina, A.S. Vorontsov, P.K. Kashkarov, Effect of adsorption of the donor and acceptor molecules at the surface of porous silicon on the recombination properties of silicon nanocrystals. Semiconductors 38(11), 1344 (2004).  https://doi.org/10.1134/1.1823072 ADSCrossRefGoogle Scholar
  24. 24.
    S. Ma, M. Hu, P. Zeng, M. Li, W. Yan, Y. Qin, Synthesis and low-temperature gas sensing properties of tungsten oxide nanowires/porous silicon composite. Sensors Actuat. B Chem. 341, 192 (2014).  https://doi.org/10.1016/j.snb.2013.10.121 CrossRefGoogle Scholar
  25. 25.
    F. Priolo, T. Gregorkiewicz, M. Galli, T.F. Krauss, Silicon nanostructures for photonics and photovoltaics. Nature Nanotech. 9, 19 (2014).  https://doi.org/10.1038/nnano.2013.271 ADSCrossRefGoogle Scholar
  26. 26.
    S. Basude, D. Debajyoti, Development of nc-Si/a-SiNx: H thin films for photovoltaic and light-emitting applications. Sci. Adv. Mater. 5, 188 (2013).  https://doi.org/10.1166/sam.2013.1446 CrossRefGoogle Scholar
  27. 27.
    R.K. Bommali, S.P. Singh, S. Rai, P. Mishra, B.R. Sekhar, G.V. Prakash, P. Srivastava, Excitation dependent photoluminescence study of Si-rich a-SiNx: H thin films. J. Appl. Phys. 112, 123518 (2012).  https://doi.org/10.1063/1.4770375 ADSCrossRefGoogle Scholar
  28. 28.
    Z. Xia, S. Huang, Structural and photoluminescence properties of silicon nanocrystals embedded in SiC matrix prepared by magnetron sputtering. Solid State Commun. 150, 914 (2010).  https://doi.org/10.1016/j.ssc.2010.02.032 ADSCrossRefGoogle Scholar
  29. 29.
    M.S. Kang, R.K. Singh, T.-H. Kim, J.-H. Kim, K.D. Patel, H.-W. Kim, Optical imaging and anticancer chemotherapy through carbon dot created hollow mesoporous silica nanoparticles. Acta Biomater. 55, 466–480 (2017).  https://doi.org/10.1016/j.actbio.2017.03.054 CrossRefGoogle Scholar
  30. 30.
    T.-M. Liu, J. Conde, T. Lipinski, A. Bednarkiewicz, C.-C. Huang, Smart NIR linear and nonlinear optical nanomaterials for cancer theranostics: prospects in photomedicine. Prog. Mater. Sci. 88, 89 (2017).  https://doi.org/10.1016/j.pmatsci.2017.03.004 CrossRefGoogle Scholar
  31. 31.
    B.F.P. McVey, S. Prabakar, J.J. Gooding, R.D. Tilley, Solution synthesis, surface passivation, optical properties, biomedical applications, and cytotoxicity of silicon and germanium nanocrystals. Chem. Plus. Chem. 82, 60–73 (2017).  https://doi.org/10.1002/cplu.201600207 CrossRefGoogle Scholar
  32. 32.
    C.-C. Tu, K. Awasthi, K.-P. Chen, C.-H. Lin, M. Hamada, N. Ohta, Y.-K. Li, Time-gated imaging on live cancer cells using silicon quantum dot nanoparticles with long-lived fluorescence. ACS Photonics 4, 1306–1315 (2017).  https://doi.org/10.1021/acsphotonics.7b00188 CrossRefGoogle Scholar
  33. 33.
    T. Kumeria, S.J.P. McInnes, S. Maher, A. Santos, Porous silicon for drug delivery applications and theranostics: recent advances, critical review and perspectives. Expert Opin. Drug. Del. 14, 1407–1422 (2017).  https://doi.org/10.1080/17425247.2017.1317245 CrossRefGoogle Scholar
  34. 34.
    T. Serdiuk, Yu. Zakharko, T. Nychyporuk, A. Geloen, M. Lemiti, V. Lysenko, Nanostructured silicon nitride thin films for label-free multicolor luminescent cell imaging. Nanoscale 4, 5860 (2012).  https://doi.org/10.1039/C2NR31376F CrossRefGoogle Scholar
  35. 35.
    Yu.V Ryabchikov, I.A. Belogorokhov, M.B. Gongalskiy, L.A. Osminkina, VYu. Timoshenko, Photosensitized Generation of singlet oxygen in powders and aqueous suspensions of silicon nanocrystals. Semiconductors 45(8), 1059 (2011).  https://doi.org/10.1134/S106378261108015X ADSCrossRefGoogle Scholar
  36. 36.
    Yu.V Ryabchikov, I.A. Belogorokhov, A.S. Vorontsov, L.A. Osminkina, V.Y. Timoshenko, P.K. Kashkarov, Dependence of the singlet oxygen photosensitization efficiency on morphology of porous silicon. Phys. Status Solidi A 204, 1271 (2007).  https://doi.org/10.1002/pssa.200674306 ADSCrossRefGoogle Scholar
  37. 37.
    E.A. Konstantinova, V.A. Demin, A.S. Vorontzov, Yu.V Ryabchikov, I.A. Belogorokhov, L.A. Osminkina, P.A. Forsh, P.K. Kashkarov, VYu. Timoshenko, Electron paramagnetic resonance and photoluminescence study of si nanocrystals—photosensitizers of singlet oxygen molecules. J. Non-Cryst. Solids 352, 1156 (2006).  https://doi.org/10.1016/j.jnoncrysol.2005.12.017 ADSCrossRefGoogle Scholar
  38. 38.
    Yu.V Ryabchikov, Size modification of optically active contamination-free silicon nanoparticles with paramagnetic defects by their fast synthesis and dissolution. Phys. Status Solidi A 216(2), A1800685 (2019).  https://doi.org/10.1002/pssa.201800685 ADSCrossRefGoogle Scholar
  39. 39.
    A.Y. Kharin, V.V. Lysenko, A. Rogov, Yu.V. Ryabchikov, A. Geloen, I. Tishchenko, O. Marty, P.G. Sennikov, R.A. Kornev, I.N. Zavestovskaya, A.V. Kabashin, V.Y. Timoshenko, Bi-modal nonlinear optical contrast from Si nanoparticles for cancer theranostics. Adv. Opt. Mater. 2019, 18011728 (2019).  https://doi.org/10.1002/adom.201801728 CrossRefGoogle Scholar
  40. 40.
    M.Yu. Kirillin, E.A. Sergeeva, P.D. Agrba, A.D. Krainov, A.A. Ezhov, D.V. Shuleiko, P.K. Kashkarov, S.V. Zabotnov, Laser-ablated silicon nanoparticles: optical properties and perspectives in optical coherence tomography. Las. Phys. 25, 075604 (2015).  https://doi.org/10.1088/1054-660X/25/7/075604 ADSCrossRefGoogle Scholar
  41. 41.
    S. Rao, J. Sutin, R. Clegg, E. Gratton, M.H. Nayfeh, S. Habbal, A. Tsolakidis, R.M. Martin, Excited states of tetrahedral single-core Si29 nanoparticles. Phys. Rev. B 69, 205319 (2004).  https://doi.org/10.1103/PhysRevB.69.205319 ADSCrossRefGoogle Scholar
  42. 42.
    A. Tanaka, R. Saito, T. Kamikake, M. Imamura, H. Yasuda, Electronic structures and optical properties of butyl-passivated Si nanoparticles. Solid State Commun. 140, 400 (2006).  https://doi.org/10.1016/j.ssc.2006.07.045 ADSCrossRefGoogle Scholar
  43. 43.
    P. Liu, Y. Liang, H.B. Li, J. Xiao, T. He, G.W. Yang, Violet-blue photoluminescence from Si nanoparticles with zinc-blende structure synthesized by laser ablation in liquids. AIP Adv. 3, 022127 (2013).  https://doi.org/10.1063/1.4794203 ADSCrossRefGoogle Scholar
  44. 44.
    V. Lysenko, V. Onyskevych, O. Marty, V.A. Skryshevsky, Y. Chevolot, C. Bru-Chevallier, Extraction of ultraviolet emitting silicon species from strongly hydrogenated nanoporous silicon. Appl. Phys. Lett. 92, 251910 (2008).  https://doi.org/10.1063/1.2948955 ADSCrossRefGoogle Scholar
  45. 45.
    P.J. Wu, Y.C. Wang, I.C. Chen, Influence of phosphorous doping on silicon nanocrystal formation in silicon-rich silicon nitride films. J. Phys. D Appl. Phys. 46, 125104 (2013).  https://doi.org/10.1088/0022-3727/46/12/125104 ADSCrossRefGoogle Scholar
  46. 46.
    H. Sugimoto, M. Fujii, K. Imakita, S. Hayashi, K. Akamatsu, Phosphorus and boron codoped colloidal silicon nanocrystals with inorganic atomic ligands. J. Phys. Chem. C 117, 6807 (2013).  https://doi.org/10.1021/jp312788k CrossRefGoogle Scholar
  47. 47.
    B. Paviet-Salomona, S. Galla, A. Slaoui, Investigation of charges carrier density in phosphorus and boron doped SiNx: H layers for crystalline silicon solar cells. Mater. Sci. Eng. B Adv. 178, 580 (2013).  https://doi.org/10.1016/j.mseb.2012.11.009 CrossRefGoogle Scholar
  48. 48.
    K. Sato, A. Castaldini, N. Fukata, A. Cavalini, Electronic level scheme in boron- and phosphorus-doped silicon nanowires. Nano Lett. 12, 3012 (2012).  https://doi.org/10.1021/nl300802x ADSCrossRefGoogle Scholar
  49. 49.
    Y. Liu, Y. Zhou, W. Shi, L. Zhao, B. Sun, T. Ye, Study of photoluminescence spectra of Si-rich SiNx films. Mater. Lett. 58, 2397 (2004).  https://doi.org/10.1016/j.matlet.2004.02.015 CrossRefGoogle Scholar
  50. 50.
    B.S. Sahu, F. Delachat, A. Slaoui, M. Carrada, G. Ferblantier, D. Muller, Effect of annealing treatments on photoluminescence and charge storage mechanism in silicon-rich SiNx: H films. Nanoscale Res. Lett. 6, 178 (2011).  https://doi.org/10.1186/1556-276X-6-178 ADSCrossRefGoogle Scholar
  51. 51.
    K.S. Seol, T. Futami, T. Watanabe, Y. Ohki, M. Takiyama, Ef https://doi.org/10.1063/1.370188fects of ion implantation and thermal annealing on the photoluminescence in amorphous silicon nitride. J. Appl. Phys. 85, 6746 (1999).ADSCrossRefGoogle Scholar
  52. 52.
    F.L. Martı́nez, I. Mártil, G. González-Dı́az, B. Selle, I. Sieber, Influence of rapid thermal annealing processes on the properties of SiNx:H films deposited by the electron cyclotron resonance method. J. Non-Cryst. Sol. 523, 227–230 (1998).  https://doi.org/10.1016/S0022-3093(98)00092-1 ADSCrossRefGoogle Scholar
  53. 53.
    H.L. Hao, L.K. Wu, W.Z. Shen, Controlling the red luminescence from silicon quantum dots in hydrogenated amorphous silicon nitride films. Appl. Phys. Lett. 92, 121922 (2008).  https://doi.org/10.1063/1.2902296 ADSCrossRefGoogle Scholar
  54. 54.
    C. Ko, J. Loo, M. Han, Annealing effects on the photoluminescence of amorphous silicon-nitride films. J. Korean Phys. Soc. 48, 1277 (2006)Google Scholar
  55. 55.
    M.G. Hussein, K. Wörhoff, G. Sengo, A. Driessen, Reduction of hydrogen-induced optical losses of plasma-enhanced chemical vapor deposition silicon oxynitride by phosphorus doping and heat treatment. J. Appl. Phys. 101, 023517 (2007).  https://doi.org/10.1063/1.2423219 ADSCrossRefGoogle Scholar
  56. 56.
    J. Kistner, X. Chen, Y. Wenig, H.P. Strunk, M.B. Schubert, J.H. Werner, Photoluminescence from silicon nitride—no quantum effect. J. Appl. Phys. 110, 023520 (2011).  https://doi.org/10.1063/1.3607975 ADSCrossRefGoogle Scholar
  57. 57.
    F.F. Komarovy, L.A. Vlasukova, I.N. Parkhomenko, O.V. Milchanin, A.V. Mudryi, A.K. Togambayeva, N.S. Kovalchuk, Strong room-temperature photoluminescence of Si-rich and N-rich silicon-nitride films. Proc. NAP 2 2, 01NTF12 (2013)Google Scholar
  58. 58.
    W.L. Warren, C.H. Seager, J. Robertson, J. Kanicki, E.H. Poindexter, Creation and properties of nitrogen dangling bond defects in silicon nitride thin films. J. Electrochem. Soc. 143, 3685–3691 (1996).  https://doi.org/10.1149/1.1837272 CrossRefGoogle Scholar
  59. 59.
    S.V. Deshpande, E. Culari, Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition. J. Appl. Phys. 77, 6534 (1995).  https://doi.org/10.1063/1.359062 ADSCrossRefGoogle Scholar
  60. 60.
    J. Robertson, Electronic structure of silicon nitride. Philos. Mag. B 63, 47–77 (1991).  https://doi.org/10.1080/01418639108224430 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.HiLASE CentreInstitute of Physics of the Czech Academy of SciencesDolní BřežanyCzech Republic
  2. 2.P.N. Lebedev Physical Institute of the Russian Academy of SciencesMoscowRussia
  3. 3.Université de Lyon, Institut Des Nanotechnologies de Lyon (INL), UMR-5270CNRS, INSA de LyonVilleurbanneFrance
  4. 4.College of PhysicsJilin UniversityChangchunPeople’s Republic of China
  5. 5.Institut Des Sciences Analytiques, UMR CNRS 5280Université de Lyon 1 (UCBL)VilleurbanneFrance

Personalised recommendations