Applied Physics A

, 125:630 | Cite as

Development of silicon nitride-based nanocomposites with multicolour photoluminescence

  • Yury V. RyabchikovEmail author
  • Anatolii Lukianov
  • Bohdan Oliinyk
  • Tetyana Nychyporouk
  • Vladimir Lysenko


Silicon-rich nitride nanocomposites with stable multicolour photoluminescence (PL) are developed in this work. Firstly, a single PL band can be adjusted in the visible spectral range. Secondly, simultaneous emission of an additional PL band is achieved due to boron-doping of the nanocomposites. Impact of thermal annealing of the silicon nitride films in different atmospheres at various temperatures on their PL spectra is studied. Processes responsible for multicolour emission in the boron-doped nanocomposites are discussed. The developed nanocomposites can be further applied for nanothermometry or biosensing applications. They can be also used for synthesis of silicon nanoparticles with multicolour PL.

Graphic abstract

Intense violet-based multicolour photoluminescence of silicon nitride nanocomposite with tunable emission position is achieved.



Yu.V.R. acknowledges the European Regional Development Fund and the state budget of the Czech Republic (Project BIATRI: CZ.02.1.01/0.0/0.0/15_003/0000445) and the Ministry of Education, Youth and Sports (Programs NPU I-Project no. LO1602).


  1. 1.
    Yu.V Ryabchikov, Facile laser synthesis of multimodal composite silicon/gold nanoparticles with variable chemical composition. J. Nanopart. Res. 21(4), 85 (2019). ADSCrossRefGoogle Scholar
  2. 2.
    P. Zhu, K. Tan, Q. Chen, J. Xiong, L. Gao, Origins of efficient multiemission luminescence in carbon dots. Chem. Mater. 31, 4732–4742 (2019). CrossRefGoogle Scholar
  3. 3.
    D. Ruiz, B. del Rosal, M. Acebrón, C. Palencia, C. Sun, J. Cabanillas-González, M. López-Haro, A.B. Hungría, D. Jaque, B.H. Juarez, Ag/Ag2S nanocrystals for high sensitivity near-infrared luminescence nanothermometry. Adv. Funct. Mat. 27, 1604629 (2017). CrossRefGoogle Scholar
  4. 4.
    S. Uchiyama, C. Gota, Luminescent molecular thermometers for the ratiometric sensing of intracellular temperature. Rev. Anal. Chem. 36, 20160021 (2016). CrossRefGoogle Scholar
  5. 5.
    J. Yang, Y. Liu, Y. Zhao, Z. Gong, M. Zhang, D. Yan, H. Zhu, C. Liu, C. Xu, H. Zhang, Ratiometric afterglow nanothermometer for simultaneous in situ bioimaging and local tissue temperature sensing. Chem. Mater. 29, 8119–8131 (2017). CrossRefGoogle Scholar
  6. 6.
    C. Wang, H. Lin, Z. Xu, Y. Huang, M.G. Humphrey, C. Zhang, Tunable carbon-dot-based dual-emission fluorescent nanohybrids for ratiometric optical thermometry in living cells. ACS Appl. Mater. Inter. 8, 6621–6628 (2016). CrossRefGoogle Scholar
  7. 7.
    J.-R. Macairan, D.B. Jaunky, A. Piekny, R. Naccache, Intracellular ratiometric temperature sensing using fluorescent carbon dots. Nanoscale Adv. 1, 105–113 (2019). ADSCrossRefGoogle Scholar
  8. 8.
    L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, A. Bednarkiewicz, A broadening temperature sensitivity range with a core–shell YbEr@YbNd double ratiometric optical nanothermometer. Nanoscale 8, 5037–5042 (2016). ADSCrossRefGoogle Scholar
  9. 9.
    O.L.A. Savchuk, J.J. Carvajal, J. Massons, C. Cascales, M. Aguiló, F. Díaz, Novel low-cost, compact and fast signal processing sensor for ratiometric luminescent nanothermometry. Sensor Actuat A-Phys 250, 87–95 (2016). CrossRefGoogle Scholar
  10. 10.
    M. Xu, X. Zou, Q. Su, W. Yuan, C. Cao, Q. Wang, X. Zhu, W. Feng, F. Li, Ratiometric nanothermometer in vivo based on triplet sensitized upconversion. Nat. Commun. 9, 2698 (2018). ADSCrossRefGoogle Scholar
  11. 11.
    E.N. Cerón, D.H. Ortgies, B. del Rosal, F. Ren, A. Benayas, F. Vetrone, D. Ma, F. Sanz-Rodríguez, J.G. Solé, D. Jaque, E.M. Rodríguez, Hybrid nanostructures for high-sensitivity luminescence nanothermometry in the second biological window. Adv. Mater. 27, 4781–4787 (2015). CrossRefGoogle Scholar
  12. 12.
    S. Han, X. Qin, Z. An, Y. Zhu, L. Liang, Y. Han, W. Huang, X. Liu, Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water. Nat. Comm. 7, 13059 (2016). ADSCrossRefGoogle Scholar
  13. 13.
    D. Yue, Q. Li, W. Lu, Q. Wang, M. Wang, C. Li, L. Jin, Y. Shi, Z. Wang, J. Hao, Multi-color luminescence of uniform CdWO4 nanorods through Eu3+ ion doping. J. Mater. Chem. C 3, 2865–2871 (2015). CrossRefGoogle Scholar
  14. 14.
    S. Goderski, M. Runowski, S. Lis, Synthesis of luminescent KY3F10 nanopowder multi-doped with lanthanide ions by a co-precipitation method. J. Rare Earths 34, 808–813 (2016). CrossRefGoogle Scholar
  15. 15.
    J. Sarkar, S. Mondal, S. Panja, I. Dey, A. Sarkar, U.K. Ghorai, Multicolour tuning and perfect white emission from novel PbWO4:Yb3+:Ho3+:Tm3+ nanophosphor. Mater. Res. Bull. 112, 314–322 (2019). CrossRefGoogle Scholar
  16. 16.
    P. Singh, P.K. Shahi, S.K. Singh, A.K. Singh, M.K. Singh, R. Prakash, S.B. Rai, Lanthanide doped ultrafine hybrid nanostructures: multicolour luminescence, upconversion based energy transfer and luminescent solar collector applications. Nanoscale 9, 696–705 (2017). CrossRefGoogle Scholar
  17. 17.
    B. Li, X. Huang, Multicolour tunable luminescence of thermal-stable Ce3+/Tb3+/Eu3+-triactivated Ca3Gd(GaO)3(BO3)4 phosphors via Ce3+ → Tb3+ → Eu3+ energy transfer for near-UV WLEDs applications. Ceram. Int. 44, 4915–4923 (2018). CrossRefGoogle Scholar
  18. 18.
    V. Kumar, A. Pandey, O.M. Ntwaeaborwa, V. Dutta, H.C. Swart, Structural and luminescence properties of Eu3+/Dy3+ embedded sodium silicate glass for multicolour emission. J. Alloy Compd. 708, 922–931 (2017). CrossRefGoogle Scholar
  19. 19.
    D. Alexander, K. Thomas, S. Sisira, L.A. Jacob, S. Gopi, A. Kumar, P.R. Biju, N.V. Unnikrishnan, C. Joseph, Eu3+ activated terbium oxalate nanocrystals: a novel luminescent material with delayed concentration quenching and tunable multicolour emission. Opt. Mater. 86, 366–375 (2018). ADSCrossRefGoogle Scholar
  20. 20.
    Yu.V. Ryabchikov, V. Lysenko, T. Nychyporuk, Enhanced thermal sensitivity of silicon nanoparticles embedded in (nano–Ag)/SiNx for luminescent thermometry. J. Phys. Chem. C 118, 12515 (2014). CrossRefGoogle Scholar
  21. 21.
    Yu.V. Ryabchikov, S.A. Alekseev, V. Lysenko, G. Bremond, J.-M. Bluet, Photoluminescence thermometry with alkyl–terminated silicon nanoparticles dispersed in low–polar liquids. Phys. Status Solidi R 7(6), 414 (2013). CrossRefGoogle Scholar
  22. 22.
    Yu.V Ryabchikov, S.A. Alekseev, V. Lysenko, G. Bremond, J.-M. Bluet, Photoluminescence of silicon nanoparticles chemically modified by alkyl groups and dispersed in low–polar liquids. J. Nanopart. Res. 15(4), 1535 (2013). ADSCrossRefGoogle Scholar
  23. 23.
    E.A. Konstantinova, Yu.V Ryabchikov, L.A. Osminkina, A.S. Vorontsov, P.K. Kashkarov, Effect of adsorption of the donor and acceptor molecules at the surface of porous silicon on the recombination properties of silicon nanocrystals. Semiconductors 38(11), 1344 (2004). ADSCrossRefGoogle Scholar
  24. 24.
    S. Ma, M. Hu, P. Zeng, M. Li, W. Yan, Y. Qin, Synthesis and low-temperature gas sensing properties of tungsten oxide nanowires/porous silicon composite. Sensors Actuat. B Chem. 341, 192 (2014). CrossRefGoogle Scholar
  25. 25.
    F. Priolo, T. Gregorkiewicz, M. Galli, T.F. Krauss, Silicon nanostructures for photonics and photovoltaics. Nature Nanotech. 9, 19 (2014). ADSCrossRefGoogle Scholar
  26. 26.
    S. Basude, D. Debajyoti, Development of nc-Si/a-SiNx: H thin films for photovoltaic and light-emitting applications. Sci. Adv. Mater. 5, 188 (2013). CrossRefGoogle Scholar
  27. 27.
    R.K. Bommali, S.P. Singh, S. Rai, P. Mishra, B.R. Sekhar, G.V. Prakash, P. Srivastava, Excitation dependent photoluminescence study of Si-rich a-SiNx: H thin films. J. Appl. Phys. 112, 123518 (2012). ADSCrossRefGoogle Scholar
  28. 28.
    Z. Xia, S. Huang, Structural and photoluminescence properties of silicon nanocrystals embedded in SiC matrix prepared by magnetron sputtering. Solid State Commun. 150, 914 (2010). ADSCrossRefGoogle Scholar
  29. 29.
    M.S. Kang, R.K. Singh, T.-H. Kim, J.-H. Kim, K.D. Patel, H.-W. Kim, Optical imaging and anticancer chemotherapy through carbon dot created hollow mesoporous silica nanoparticles. Acta Biomater. 55, 466–480 (2017). CrossRefGoogle Scholar
  30. 30.
    T.-M. Liu, J. Conde, T. Lipinski, A. Bednarkiewicz, C.-C. Huang, Smart NIR linear and nonlinear optical nanomaterials for cancer theranostics: prospects in photomedicine. Prog. Mater. Sci. 88, 89 (2017). CrossRefGoogle Scholar
  31. 31.
    B.F.P. McVey, S. Prabakar, J.J. Gooding, R.D. Tilley, Solution synthesis, surface passivation, optical properties, biomedical applications, and cytotoxicity of silicon and germanium nanocrystals. Chem. Plus. Chem. 82, 60–73 (2017). CrossRefGoogle Scholar
  32. 32.
    C.-C. Tu, K. Awasthi, K.-P. Chen, C.-H. Lin, M. Hamada, N. Ohta, Y.-K. Li, Time-gated imaging on live cancer cells using silicon quantum dot nanoparticles with long-lived fluorescence. ACS Photonics 4, 1306–1315 (2017). CrossRefGoogle Scholar
  33. 33.
    T. Kumeria, S.J.P. McInnes, S. Maher, A. Santos, Porous silicon for drug delivery applications and theranostics: recent advances, critical review and perspectives. Expert Opin. Drug. Del. 14, 1407–1422 (2017). CrossRefGoogle Scholar
  34. 34.
    T. Serdiuk, Yu. Zakharko, T. Nychyporuk, A. Geloen, M. Lemiti, V. Lysenko, Nanostructured silicon nitride thin films for label-free multicolor luminescent cell imaging. Nanoscale 4, 5860 (2012). CrossRefGoogle Scholar
  35. 35.
    Yu.V Ryabchikov, I.A. Belogorokhov, M.B. Gongalskiy, L.A. Osminkina, VYu. Timoshenko, Photosensitized Generation of singlet oxygen in powders and aqueous suspensions of silicon nanocrystals. Semiconductors 45(8), 1059 (2011). ADSCrossRefGoogle Scholar
  36. 36.
    Yu.V Ryabchikov, I.A. Belogorokhov, A.S. Vorontsov, L.A. Osminkina, V.Y. Timoshenko, P.K. Kashkarov, Dependence of the singlet oxygen photosensitization efficiency on morphology of porous silicon. Phys. Status Solidi A 204, 1271 (2007). ADSCrossRefGoogle Scholar
  37. 37.
    E.A. Konstantinova, V.A. Demin, A.S. Vorontzov, Yu.V Ryabchikov, I.A. Belogorokhov, L.A. Osminkina, P.A. Forsh, P.K. Kashkarov, VYu. Timoshenko, Electron paramagnetic resonance and photoluminescence study of si nanocrystals—photosensitizers of singlet oxygen molecules. J. Non-Cryst. Solids 352, 1156 (2006). ADSCrossRefGoogle Scholar
  38. 38.
    Yu.V Ryabchikov, Size modification of optically active contamination-free silicon nanoparticles with paramagnetic defects by their fast synthesis and dissolution. Phys. Status Solidi A 216(2), A1800685 (2019). ADSCrossRefGoogle Scholar
  39. 39.
    A.Y. Kharin, V.V. Lysenko, A. Rogov, Yu.V. Ryabchikov, A. Geloen, I. Tishchenko, O. Marty, P.G. Sennikov, R.A. Kornev, I.N. Zavestovskaya, A.V. Kabashin, V.Y. Timoshenko, Bi-modal nonlinear optical contrast from Si nanoparticles for cancer theranostics. Adv. Opt. Mater. 2019, 18011728 (2019). CrossRefGoogle Scholar
  40. 40.
    M.Yu. Kirillin, E.A. Sergeeva, P.D. Agrba, A.D. Krainov, A.A. Ezhov, D.V. Shuleiko, P.K. Kashkarov, S.V. Zabotnov, Laser-ablated silicon nanoparticles: optical properties and perspectives in optical coherence tomography. Las. Phys. 25, 075604 (2015). ADSCrossRefGoogle Scholar
  41. 41.
    S. Rao, J. Sutin, R. Clegg, E. Gratton, M.H. Nayfeh, S. Habbal, A. Tsolakidis, R.M. Martin, Excited states of tetrahedral single-core Si29 nanoparticles. Phys. Rev. B 69, 205319 (2004). ADSCrossRefGoogle Scholar
  42. 42.
    A. Tanaka, R. Saito, T. Kamikake, M. Imamura, H. Yasuda, Electronic structures and optical properties of butyl-passivated Si nanoparticles. Solid State Commun. 140, 400 (2006). ADSCrossRefGoogle Scholar
  43. 43.
    P. Liu, Y. Liang, H.B. Li, J. Xiao, T. He, G.W. Yang, Violet-blue photoluminescence from Si nanoparticles with zinc-blende structure synthesized by laser ablation in liquids. AIP Adv. 3, 022127 (2013). ADSCrossRefGoogle Scholar
  44. 44.
    V. Lysenko, V. Onyskevych, O. Marty, V.A. Skryshevsky, Y. Chevolot, C. Bru-Chevallier, Extraction of ultraviolet emitting silicon species from strongly hydrogenated nanoporous silicon. Appl. Phys. Lett. 92, 251910 (2008). ADSCrossRefGoogle Scholar
  45. 45.
    P.J. Wu, Y.C. Wang, I.C. Chen, Influence of phosphorous doping on silicon nanocrystal formation in silicon-rich silicon nitride films. J. Phys. D Appl. Phys. 46, 125104 (2013). ADSCrossRefGoogle Scholar
  46. 46.
    H. Sugimoto, M. Fujii, K. Imakita, S. Hayashi, K. Akamatsu, Phosphorus and boron codoped colloidal silicon nanocrystals with inorganic atomic ligands. J. Phys. Chem. C 117, 6807 (2013). CrossRefGoogle Scholar
  47. 47.
    B. Paviet-Salomona, S. Galla, A. Slaoui, Investigation of charges carrier density in phosphorus and boron doped SiNx: H layers for crystalline silicon solar cells. Mater. Sci. Eng. B Adv. 178, 580 (2013). CrossRefGoogle Scholar
  48. 48.
    K. Sato, A. Castaldini, N. Fukata, A. Cavalini, Electronic level scheme in boron- and phosphorus-doped silicon nanowires. Nano Lett. 12, 3012 (2012). ADSCrossRefGoogle Scholar
  49. 49.
    Y. Liu, Y. Zhou, W. Shi, L. Zhao, B. Sun, T. Ye, Study of photoluminescence spectra of Si-rich SiNx films. Mater. Lett. 58, 2397 (2004). CrossRefGoogle Scholar
  50. 50.
    B.S. Sahu, F. Delachat, A. Slaoui, M. Carrada, G. Ferblantier, D. Muller, Effect of annealing treatments on photoluminescence and charge storage mechanism in silicon-rich SiNx: H films. Nanoscale Res. Lett. 6, 178 (2011). ADSCrossRefGoogle Scholar
  51. 51.
    K.S. Seol, T. Futami, T. Watanabe, Y. Ohki, M. Takiyama, Ef of ion implantation and thermal annealing on the photoluminescence in amorphous silicon nitride. J. Appl. Phys. 85, 6746 (1999).ADSCrossRefGoogle Scholar
  52. 52.
    F.L. Martı́nez, I. Mártil, G. González-Dı́az, B. Selle, I. Sieber, Influence of rapid thermal annealing processes on the properties of SiNx:H films deposited by the electron cyclotron resonance method. J. Non-Cryst. Sol. 523, 227–230 (1998). ADSCrossRefGoogle Scholar
  53. 53.
    H.L. Hao, L.K. Wu, W.Z. Shen, Controlling the red luminescence from silicon quantum dots in hydrogenated amorphous silicon nitride films. Appl. Phys. Lett. 92, 121922 (2008). ADSCrossRefGoogle Scholar
  54. 54.
    C. Ko, J. Loo, M. Han, Annealing effects on the photoluminescence of amorphous silicon-nitride films. J. Korean Phys. Soc. 48, 1277 (2006)Google Scholar
  55. 55.
    M.G. Hussein, K. Wörhoff, G. Sengo, A. Driessen, Reduction of hydrogen-induced optical losses of plasma-enhanced chemical vapor deposition silicon oxynitride by phosphorus doping and heat treatment. J. Appl. Phys. 101, 023517 (2007). ADSCrossRefGoogle Scholar
  56. 56.
    J. Kistner, X. Chen, Y. Wenig, H.P. Strunk, M.B. Schubert, J.H. Werner, Photoluminescence from silicon nitride—no quantum effect. J. Appl. Phys. 110, 023520 (2011). ADSCrossRefGoogle Scholar
  57. 57.
    F.F. Komarovy, L.A. Vlasukova, I.N. Parkhomenko, O.V. Milchanin, A.V. Mudryi, A.K. Togambayeva, N.S. Kovalchuk, Strong room-temperature photoluminescence of Si-rich and N-rich silicon-nitride films. Proc. NAP 2 2, 01NTF12 (2013)Google Scholar
  58. 58.
    W.L. Warren, C.H. Seager, J. Robertson, J. Kanicki, E.H. Poindexter, Creation and properties of nitrogen dangling bond defects in silicon nitride thin films. J. Electrochem. Soc. 143, 3685–3691 (1996). CrossRefGoogle Scholar
  59. 59.
    S.V. Deshpande, E. Culari, Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition. J. Appl. Phys. 77, 6534 (1995). ADSCrossRefGoogle Scholar
  60. 60.
    J. Robertson, Electronic structure of silicon nitride. Philos. Mag. B 63, 47–77 (1991). ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.HiLASE CentreInstitute of Physics of the Czech Academy of SciencesDolní BřežanyCzech Republic
  2. 2.P.N. Lebedev Physical Institute of the Russian Academy of SciencesMoscowRussia
  3. 3.Université de Lyon, Institut Des Nanotechnologies de Lyon (INL), UMR-5270CNRS, INSA de LyonVilleurbanneFrance
  4. 4.College of PhysicsJilin UniversityChangchunPeople’s Republic of China
  5. 5.Institut Des Sciences Analytiques, UMR CNRS 5280Université de Lyon 1 (UCBL)VilleurbanneFrance

Personalised recommendations