Applied Physics A

, 125:606 | Cite as

Physical properties of o-LiMnO2

  • R. BagtacheEmail author
  • R. Brahimi
  • K. Abdmeziem
  • M. Trari


Pure o-LiMnO2 synthesized by solid-state reaction under Ar atmosphere at 850 °C crystallizes in an orthorhombic symmetry (S.G. Pmnm) with the lattice constants a = 0.2805, b = 0.5751 and c = 0.4573 nm. The UV–visible diffuse reflectance revealed a direct transition at 1.92 eV, assigned to the crystal field splitting of Mn3+ in octahedral coordination. The Raman spectroscopy of o-LiMnO2 shows the characteristic bands of Mn–O–Mn, Mn–O and LiO6. The electrical conductivity follows an exponential law. The conduction is thermally activated and increases with increasing temperature, indicating a semi-conducting behavior with activation energy of 0.68 eV.



The authors are grateful to Dr. R. Laib for his technical assistance.


  1. 1.
    N. Imanishi, T. Horiuchi, A. Hirano, Y. Takeda, Lithium intercalation mechanism of iron cyanocomplex. Stud. Surf. Sci. Catal. 132, 935–938 (2001)CrossRefGoogle Scholar
  2. 2.
    W.D. Johnston, R.R. Heikes, A study of the LixMn(1-x)O system. J. Am. Chem. Soc. 78, 3255–3260 (1956)CrossRefGoogle Scholar
  3. 3.
    G. Dittrich, R. Hoppe, Zur Kristallstruktur von LiMnO2. Z. Anorg. Allg. Chem. 368, 262–270 (1969)CrossRefGoogle Scholar
  4. 4.
    R. Hoppe, G. Brachtel, M. Jansen, Zur Kenntnis der Oxomarlganate (lll): uber LiMnO, und β-NaMnO. Z. Anorg. Allg. Chem. 417, 1–10 (1975)CrossRefGoogle Scholar
  5. 5.
    X. Li, Z. Su, Y. Wang, Electrochemical properties of monoclinic and orthorhombic LiMnO2, synthesized by a one-step hydrothermal method. J. Alloy. Compd. 735, 2182–2189 (2018)CrossRefGoogle Scholar
  6. 6.
    P.G. Bruce, Solid-state chemistry of lithium power sources. Chem. Commun. 1997, 1817–1824 (1997)CrossRefGoogle Scholar
  7. 7.
    M.M. Thackeray, Manganese oxides for lithium batteries. Prog. Solid State Chem. 25, 1–71 (1997)CrossRefGoogle Scholar
  8. 8.
    R. Chitrakar, K. Sakane, A. Umeno, S. Kasaishi, N. Takagi, K. Ooi, Synthesis of orthorhombic LiMnO2 by solid-phase reaction under steam atmosphere and a study of its heat and acid-treated phases. J. Solid State Chem. 169, 66–74 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    J.M. Paulsen, C.L. Thomas, J.R. Dahn, Layered Li–Mn-oxide with the O2 structure: a cathode material for Li-ion cells which does not convert to spinel. J. Electrochem. Soc. 146(10), 3560–3565 (1999)CrossRefGoogle Scholar
  10. 10.
    R.J. Gummov, M.M. Thackeray, An investigation of spinel-related and orthorhombic LiMnO2 cathodes for rechargeable lithium batteries. J. Electrochem. Soc. 141, 1178–1182 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    C.H. Lu, H.C. Wang, Reverse-microemulsion preparation and characterization of ultrafine orthorhombic LiMnO2 powders for lithium-ion secondary batteries. J. Eur. Ceram. Soc. 24, 717–723 (2004)CrossRefGoogle Scholar
  12. 12.
    M.Q. Wu, Q.Y. Zhang, H.P. Lu, Nanocrystalline orthorhombic LiMnO2 cathode materials synthesized by a two-step liquid-phase thermal process. Solid State Ion. 169, 47–50 (2004)CrossRefGoogle Scholar
  13. 13.
    Q. Liu, Y.X. Li, Z.L. Hu, One-step hydrothermal routine for pure-phased orthorhombic LiMnO2 for Li ion battery application. Electrochim. Acta 53, 7298–7302 (2008)CrossRefGoogle Scholar
  14. 14.
    F. Zhou, X.M. Zhao, Y.Q. Liu, Size-controlled hydrothermal synthesis and electrochemical behavior of orthorhombic LiMnO2 nanorods. J. Phys. Chem. Solids 69, 2061–2065 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    I.D. Seymour, D.J. Wales, C.P. Grey, Preventing structural rearrangements on battery cycling: a first-principles investigation of the effect of dopants on the migration barriers in layered Li0.5MnO2. J. Phys. Chem. C. 120, 19521–19530 (2016)CrossRefGoogle Scholar
  16. 16.
    F. Schipper, D. Aurbach, Past, present and future of lithium ion batteries. Russ. J. Electrochem. 52, 1095–1121 (2016)CrossRefGoogle Scholar
  17. 17.
    M. Tabuchi, H. Kageyama, K. Takamori, Y. Imanari, K. Nakane, Synthesis and electrochemical characterization of Ni-and Ti-substituted Li2MnO3 positive electrode material using co-precipitation–hydrothermal–calcination method. Electrochim. Acta 210, 105–110 (2016)CrossRefGoogle Scholar
  18. 18.
    Y.I. Jang, W.D. Moorehead, Y.M. Chiang, Synthesis of the monoclinic and orthorhombic phases of LiMnO2 in oxidizing atmosphere. Solid State Ion. 149, 201–207 (2002)CrossRefGoogle Scholar
  19. 19.
    R. Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, Synthesis of o-LiMnO2 by microwave irradiation and study. Its heat treatment and lithium exchange. J. Solid State Chem. 163, 1–4 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    L.C. Yang, Q.T. Qu, Y. Shi, Y.P. Wu, T. Van Ree, High-energy ball milling, mechanochemical materials for lithium-ion batteries by mechanochemical methods. Process. Nanopowders 15, 361–408 (2010)Google Scholar
  21. 21.
    Z. Guo, K. Konstantinov, G. Wang, H. Liu, S. Dou, Preparation of orthorhombic LiMnO2 material via the sol–gel process. J. Power Sources 119, 221–225 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    H. Zhao, J. Wang, G. Wang, S. Liu, M. Tan, X. Liu, S. Komarneni, Facile synthesis of orthorhombic LiMnO2 nanorods by in situ carbothermal reduction: promising cathode material for Li ion batteries. Ceram. Int. 43, 10585–10589 (2017)CrossRefGoogle Scholar
  23. 23.
    X. Xiao, L. Wang, D. Wang, X. He, Q. Peng, Y. Li, Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles and LiMnO2 nanorods and comparison of their electrochemical performances. Nano Res. 2, 923–930 (2009)CrossRefGoogle Scholar
  24. 24.
    Y. He, R. Li, X. Ding, L. Jiang, M. Wei, Hydrothermal synthesis and electrochemical properties of orthorhombic LiMnO2 nanoplates. J. Alloy. Compd. 492, 601–604 (2010)CrossRefGoogle Scholar
  25. 25.
    H. Xu, J. Sun, L. Gao, Hydrothermal synthesis of LiMnO2 microcubes for lithium ion battery application. Ionics 19, 63–69 (2013)CrossRefGoogle Scholar
  26. 26.
    R. Bagtache, R. Brahimi, D. Meziani, K. Abdmeziem, M. Trari, Preparation and magnetic properties of o-LiMnO2. J. Magn. Magn. Mater. 485, 325–330 (2019)CrossRefGoogle Scholar
  27. 27.
    Y. Jang, F.C. Chou, B. Huang, D.R. Sadoway, Y.-M. Chiang, Magnetic characterization of orthorhombic LiMnO2 and electrochemically transformed spinel LixMnO2x < 1. J. Phys. Chem. Solids 64, 2525–2533 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    L.Z. Zhao, Y.W. Chen, G.R. Wang, Raman spectra study of orthorhombic LiMnO2. Solid State Ion. 181, 1399–1402 (2010)CrossRefGoogle Scholar
  29. 29.
    C.M. Julien, M. Massot, Lattice vibrations of materials for lithium rechargeable batteries III. Lithium manganese oxides. Mater. Sci. Eng. B 100, 69–78 (2003)CrossRefGoogle Scholar
  30. 30.
    C. Juliena, M. Massotb, R. Baddour-Hadjeanc, S. Frangerd, S. Bachd, J.P. Pereira-Ramos, Raman spectra of birnessite manganese dioxides. Solid State Ion. 159, 345–356 (2003)CrossRefGoogle Scholar
  31. 31.
    B. Tripathi, P. Bhatt, P. Chandra Kanth, P. Yadav, B. Desai, M. Kumar Pandey, M. Kumar, Temperature induced structural, electrical and optical changes in solution processed perovskite material: application in photovoltaics. Sol. Energy Mater. Sol. Cells. 132, 615–622 (2015)CrossRefGoogle Scholar
  32. 32.
    M. Trari, J.P. Doumerc, P. Dordor, M. Pouchard, G. Behr, G. Krabbes, J. Phys. Chem. Solids 55, 1239–1242 (1994)ADSCrossRefGoogle Scholar
  33. 33.
    J. Molenda, M. Ziemnicki, M. Molenda, M. Bućko, J. Marzec, Transport and electrochemical properties of orthorhombic LiMnO2 cathode material for Li-ion batteries. Mater. Sci. Pol. 24, 75–83 (2006)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • R. Bagtache
    • 1
    Email author
  • R. Brahimi
    • 2
  • K. Abdmeziem
    • 1
  • M. Trari
    • 2
  1. 1.Laboratory of Electrochemistry-Corrosion, Metallurgy and Inorganic Chemistry, Faculty of ChemistryUSTHBAlgiersAlgeria
  2. 2.Laboratory of Storage and Valorization of Renewable Energies, Faculty of ChemistryUSTHBAlgiersAlgeria

Personalised recommendations