Advertisement

Applied Physics A

, 125:627 | Cite as

Study of the magnetic and magnetocaloric properties of new perovskite-type materials: La0.6Ba0.2Sr0.2Mn1−xFexO3

  • I. Chihi
  • M. BaazaouiEmail author
  • S. Mahjoub
  • W. Cheikhrouhou-Koubaa
  • M. Oumezzine
  • Kh. Farah
Article
  • 34 Downloads

Abstract

In this paper, we investigated the effect of iron doping on the structural, magnetic and magnetocaloric properties of La0.6Ba0.2Sr0.2Mn1−xFexO3 (0 < x < 0.06) samples. All the samples crystallized in a rhombohedral system with \({\text{R }}\bar{3}{\text{c}}\) space group. Magnetic measurements showed that our samples undergo a FM–PM transition around the Curie temperature (Tc) which is equal to 349 K, 289 K, and 249 K for x = 0, 0.03, and 0.06, respectively. This decrease in Tc with the increase in Fe content can be related to the weakness of the Mn3+–O–Mn4+ double exchange interaction. The magnetocaloric effect was estimated by the calculation of the magnetic entropy change (\(- \;\Delta S_{{\text{M}}}^{{\max}}\)) as a function of temperature at different applied magnetic fields. The maximum values of the magnetic entropy change are found to be 2.43 J kg−1 K−1, 2.16 J kg−1 K−1, and 1.65 J kg−1 K−1 under a magnetic field of 5 T for x = 0, 0.03, and 0.06, respectively.

Notes

References

  1. 1.
    S. Mahjoub, M. Baazaoui, E.K. Hlil, M. Oumezzine, Ceram. Int. 41, 12407–12416 (2015)CrossRefGoogle Scholar
  2. 2.
    A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N.C. Boudjada, A. Cheikhrouhou, Ceram. Int. 41, 7723–7728 (2015)CrossRefGoogle Scholar
  3. 3.
    J.M.D. Coey, M. Viret, S. von Molnar, Adv. Phys. 48, 167 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    A. Elghoul, A. Krichene, N.C. Boudjada, W. Boujelben, Ceram. Int. 44, 12723–12730 (2018)CrossRefGoogle Scholar
  5. 5.
    R. Thaljaoui, M. Pękała, J.-F. Fagnard, Ph Vanderbemden, J. Rare Earths 35, 875 (2017)CrossRefGoogle Scholar
  6. 6.
    S. Vadnala, P. Pal, S. Asthana, J. Rare Earths 33, 1072 (2015)CrossRefGoogle Scholar
  7. 7.
    C. Zener, Phys. Rev 82, 403 (1951)ADSCrossRefGoogle Scholar
  8. 8.
    M.-H. Phan, S.-C. Yu, J. Magn. Magn. Mater. 308, 325–340 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    R.A. Young, The Rietveld Method (Oxford University Press, New York, 1993)Google Scholar
  10. 10.
    J. Rodriguez- Carvajal, FULLPROF (LLB Saclay, France, 2001)Google Scholar
  11. 11.
    M. Baazaoui, S. Zemni, M. Boudard, H. Rahmouni, A. Gasmi, A. Selmi, M. Oumezzine, Mater. Lett. 63, 2167–2170 (2009)CrossRefGoogle Scholar
  12. 12.
    S. Mahjoub, M. Baazaoui, R. M’nassri, H. Rahmouni, N.C. Boudjada, M. Oumezzine, J. Alloys Compd 608, 191–196 (2014)CrossRefGoogle Scholar
  13. 13.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)ADSCrossRefGoogle Scholar
  14. 14.
    M. Khazaei, A. Malekzadeh, F. Amini, Y. Mortazavi, A. Kodadadi, Crystal Res. Technol. 45, 1064 (2010)CrossRefGoogle Scholar
  15. 15.
    A. Kumar, J. Shen, H. Zhao, Q. Zhengjian, Q. Li, J. Cryst. Growth. 490, 1–5 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    R. Tlili, A. Omri, M. Bekri, M. Bejar, E. Dhahri, E.K. Hlil, J. Magn. Magn. Mater. 399, 143–148 (2016).  https://doi.org/10.1016/j.jmmm.2015.09.073 ADSCrossRefGoogle Scholar
  17. 17.
    G.H. Jonker, Physica 20, 1118 (1954)ADSCrossRefGoogle Scholar
  18. 18.
    K.H. Ahn, X.W. Wu, K. Liu, C.L. Chien, J. Appl. Phys. 81, 5505 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    K. Sbissi, V. Collière, M.L. Kahn, E.K. Hlil, M. Ellouze, F. Elhalouani, J. Nanostruct, Chem. 5, 313–323 (2015)Google Scholar
  20. 20.
    C. Osthöver, P. Grtinberg, R.R. Arons, J. Magn. Magn. Mater. 177–181, 854–855 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    P.G. Radaelli, G. Iannone, M. Marezio, H.Y. Hwang, S.W. Cheong, J.D. Jorgensen, D.N. Argyriou, Phys. Rev. B 56, 8265 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    S. Banik, I. Das, J. Alloys Compd 742, 248–255 (2018)CrossRefGoogle Scholar
  23. 23.
    O. Hassayoun, M. Baazaoui, M.R. Laouyenne, F. Hosni, E.K. Hlil, M. Oumezzine, Kh Farah, J. Phys. Chem. Solids 135, 109058 (2019)CrossRefGoogle Scholar
  24. 24.
    S. Ghodhbane, A. Dhahri, N. Dhahri, E.K. Hlil, J. Dhahri, J. Alloys Compd 550, 358–364 (2013)CrossRefGoogle Scholar
  25. 25.
    B.D. Cullity, Introduction to Magnetic Materials (Addison Wesley, New York, 1972)Google Scholar
  26. 26.
    R. Felhi, M. Koubaa, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, J. Alloys Compd 726, 1236–1245 (2017)CrossRefGoogle Scholar
  27. 27.
    M.R. Laouyenne, M. Baazaoui, S. Mahjoub, W. Cheikhrouhou-Koubaa, M. Oumezzine, J. Alloys Compd 720, 212–220 (2017)CrossRefGoogle Scholar
  28. 28.
    S. Hcini, M. Boudard, S. Zemni, M. Oumezzine, Ceram. Int. 40, 16041–16050 (2014)CrossRefGoogle Scholar
  29. 29.
    S.K. Banerjee, Phys. Lett. 12, 16 (1964)ADSCrossRefGoogle Scholar
  30. 30.
    M. Dhahri, A. Zaidi, K. Cherif, J. Dhahri, E.K. Hlil, J. Alloys Compd 691, 578–586 (2017)CrossRefGoogle Scholar
  31. 31.
    W. Chen, W. Zhong, D.L. Hou, R.W. Gao, W.C. Feng, M.G. Zhu, Y.W. Du, J. Phys. Condens. Matter 14, 11889 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    K. Abdouli, W. Cherifa, H. Omrani, M. Mansouri, M.A. Valent, M.P.F. Graça, L. Ktari, J. Magn. Magn. Mater. 475, 635–642 (2019)ADSCrossRefGoogle Scholar
  33. 33.
    K.A. Gschneidner, V.K. Pecharsky, Annu. Rev. Mater. Sci. 30(1), 387–429 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    V.K. Pecharsky, K.A. Gschneidner, A.O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    M. Baazaoui, M. Boudard, S. Zemni, Mater. Lett. 65, 2093–2095 (2011)CrossRefGoogle Scholar
  36. 36.
    S.K. Barik, C. Krishnamoorthi, R. Mahendiran, J. Magn. Magn. Mater. 323, 1015–1021 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    Y. Sun, W. Tong, Y.H. Zhang, J. Magn. Magn. Mater. 232, 205 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    M.H. Phan, S.C. Yu, N.H. Hur, Appl. Phys. Lett. 86, 072504 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • I. Chihi
    • 1
  • M. Baazaoui
    • 1
    Email author
  • S. Mahjoub
    • 1
  • W. Cheikhrouhou-Koubaa
    • 2
  • M. Oumezzine
    • 1
  • Kh. Farah
    • 3
    • 4
  1. 1.Laboratoire de Physico-Chimie des Matériaux, Département de Physique, Faculté des Sciences de MonastirUniversité de MonastirMonastirTunisia
  2. 2.Laboratoire des Technologies des Systèmes Smart LT2S, Centre de Recherche en Numérique de SfaxTechnopole de SfaxSfaxTunisia
  3. 3.Laboratoire de Recherche en Énergie et Matière, Développement des Sciences Nucléaires (LR16CNSTN02), Centre National des Sciences et Technologie NucléairesSidi ThabetTunisia
  4. 4.Institut Supérieur du Transport et de la Logistique, Université de SousseSousseTunisia

Personalised recommendations