Applied Physics A

, 125:609 | Cite as

An ultra-wide band low-SAR flexible metasurface-enabled antenna for WBAN applications

  • Husnu Yalduz
  • Burak Koç
  • Lokman Kuzu
  • Mustafa TurkmenEmail author


In this study, an ultra-wideband low-specific absorption rate (SAR) flexible metasurface-enabled wearable antenna is proposed for wireless body area network applications. The antenna and metamaterial (MM) structure were designed and analyzed using a commercial electromagnetic simulation software program which uses a finite integration technique solver. The antenna is designed and fabricated on a jeans textile substrate in the size of 58 × 80 × 1 mm3. Moreover, MM reflector was designed on a felt textile substrate to reduce the SAR effect of the antenna and to increase the antenna performance (such as impedance matching, radiation pattern, and realized gain) parameters. Designed and fabricated antenna parameters and the SAR value results with and without MM are investigated. The simulated peak SAR values when the antenna with MM is placed on the body model are 0.86, 0.198, and 0.103 W/kg at frequencies of 4 GHz, 7 GHz, and 10 GHz, respectively, for 10 g of tissue. The simulated peak SAR value of the antenna with MM is also reduced by a percentage of 97, compared to the simulated peak SAR value of the antenna without MM. The peak SAR values of the antenna were less than the European safety limit of 2 W/kg for 10 g of tissue when the MM was used as an isolator. Furthermore, the simulated peak realized gain value of the antenna with the MM was increased by 98% (from 4.6 to 9.1 dB) compared to the simulated peak realized gain value of the antenna without MM. Simulation and measurement results showed that performance characteristics and peak SAR values of the proposed antenna were suitable and safe for wearable technologies.



The work described in this paper is supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) (Project no: 113E277) and Scientific Research Project Center of Erciyes University (Project no: FYL-2014-5075).


  1. 1.
    M.A.B. Abbasi, S.S. Nikolaou, M.A. Antoniades, M.N. Stevanović, P. Vryonides, Compact EBG-backed planar monopole for BAN wearable applications. IEEE Trans. Antennas Propag. 65(2), 453–463 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    S.M. Saeed, C.A. Balanis, C.R. Birtcher, A.C. Durgun, H.N. Shaman, Wearable flexible reconfigurable antenna integrated with artificial magnetic conductor. IEEE Antennas Wirel. Propag. Lett. 16, 2396–2399 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    D. Chaturvedi, S. Raghavan, Circular quarter-mode SIW antenna for WBAN application. IETE J. Res. 64(4), 482–488 (2018)CrossRefGoogle Scholar
  4. 4.
    G.-P. Gao, B. Hu, S.-F. Wang, C. Yang, Wearable circular ring slot antenna with EBG structure for wireless body area network. IEEE Antennas Wirel. Propag. Lett. 17(3), 434–437 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    G. Gao, B. Hu, S. Wang, C. Yang, Wearable planar inverted-F antenna with stable characteristic and low specific absorption rate. Microw. Opt. Technol. Lett. 60(4), 876–882 (2018)CrossRefGoogle Scholar
  6. 6.
    C. Mendes, C. Peixeiro, A dual-mode single-band wearable microstrip antenna for body area networks. IEEE Antennas Wirel. Propag. Lett. 16, 3055–3058 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    Z.H. Jiang, D.E. Brocker, P.E. Sieber, D.H. Werner, A compact, low-profile metasurface-enabled antenna for wearable medical body-area network devices. IEEE Trans. Antennas Propag. 62(8), 4021–4030 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    F. Wan, J. Chen, B. Li, A novel ultra-wideband antipodal Vivaldi antenna with trapezoidal dielectric substrate. Microw. Opt. Technol. Lett. 60(2), 449–455 (2018)CrossRefGoogle Scholar
  9. 9.
    V. Kumar, B. Gupta, Swastika slot UWB antenna for body-worn application in WBAN, in Medical Information and Communication Technology (ISMICT), 2014 8th International Symposium on, IEEE, 2014, pp. 1–5Google Scholar
  10. 10.
    L.A.Y. Poffelie, P.J. Soh, S. Yan, G.A. Vandenbosch, A high-fidelity all-textile UWB antenna with low back radiation for off-body WBAN applications. IEEE Trans. Antennas Propag. 64(2), 757–760 (2016)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    U.F.C. Commission, FCC Revision of Part 15 of the Commission's Rules Regarding Ultra-Wideband Transmission Systems: First Report and Order, technical report, Feb, 2002Google Scholar
  12. 12.
    M. Shakhirul, M. Jusoh, A. Ismail, M. Jais, M. Kamarudin, M. Osman, Analysis of circular polarization textile antenna in bending condition, Computer, Communications, and Control Technology (I4CT), 2015 International Conference on, IEEE, 2015, pp. 360–363.Google Scholar
  13. 13.
    M.E. Lajevardi, M. Kamyab, Ultraminiaturized metamaterial-inspired SIW textile antenna for off-body applications. IEEE Antennas Wirel. Propag. Lett. 16, 3155–3158 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    W.A.M. Al Ashwal, K.N. Ramli, Compact UWB wearable Antenna with İmproved Bandwidth and Low SAR, RF and Microwave Conference (RFM), 2013 IEEE International, IEEE, 2013, pp. 90–94Google Scholar
  15. 15.
    A. da Conceicao Andrade, I. P. Fonseca, S. F. Jilani, and A. Alomainy, Reconfigurable textile-based ultra-wideband antenna for wearable applications. In: 2016 10th European Conference on Antennas and Propagation (EuCAP) IEEE, 2016, pp. 1–4.Google Scholar
  16. 16.
    M. Koohestani, N. Pires, A.K. Skrivervik, A.A. Moreira, Influence of the human body on a new coplanar-fed ultra-wideband antenna, Antennas and Propagation (EUCAP), 2012 6th European Conference on, IEEE, 2012, pp. 316–319.Google Scholar
  17. 17.
    K. Kamardin, M.K.A. Rahim, P.S. Hall, N.A. Samsuri, T.A. Latef, M.H. Ullah, Textile artificial magnetic conductor jacket for transmission enhancement between antennas under bending and wetness measurements. Appl. Phys. A 122(4), 423 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    U. Ali, S. Ullah, J. Khan, M. Shafi, B. Kamal, A. Basir, J.A. Flint, R.D. Seager, Design and SAR analysis of wearable antenna on various parts of human body, using conventional and artificial ground planes. J. Electr. Eng. Technol. 12(1), 317–328 (2017)CrossRefGoogle Scholar
  19. 19.
    Z.H. Jiang, D.H. Werner, Robust low-profile metasurface-enabled wearable antennas for off-body communications, Antennas and Propagation (EuCAP), 2014 8th European Conference on, IEEE, 2014, pp. 21–24.Google Scholar
  20. 20.
    M. Koohestani, J.-F. Zürcher, A.A. Moreira, A.K. Skrivervik, A novel, low-profile, vertically-polarized UWB antenna for WBAN. IEEE Trans. Antennas Propag. 62(4), 1888–1894 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    S. Yan, P.J. Soh, G.A. Vandenbosch, Wearable dual-band magneto-electric dipole antenna for WBAN/WLAN applications. IEEE Trans. Antennas Propag. 63(9), 4165–4169 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    M. Hossain, M. Faruque, M. Islam, M. Ali, Low-SAR metamaterial-inspired printed monopole antenna. Appl. Phys. A 123(1), 87 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    A. Alemaryeen, S. Noghanian, Crumpling effects and specific absorption rates of flexible AMC integrated antennas. IET Microw. Antennas Propag. 12(4), 627–635 (2017)CrossRefGoogle Scholar
  24. 24.
    F.N. Giman, P.J. Soh, M.F. Jamlos, H. Lago, A.A. Al-Hadi, M. Abdulmalek, N. Abdulaziz, Conformal dual-band textile antenna with metasurface for WBAN application. Appl. Phys. A 123(1), 32 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    Y.-W. Huang, W.T. Chen, P.C. Wu, V. Fedotov, V. Savinov, Y.Z. Ho, Y.-F. Chau, N.I. Zheludev, D.P. Tsai, Design of plasmonic toroidal metamaterials at optical frequencies. Opt. Express 20(2), 1760–1768 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Y.-F.C. Chau, J.-Y. Syu, C.-T.C. Chao, H.-P. Chiang, C.M. Lim, Design of crossing metallic metasurface arrays based on high sensitivity of gap enhancement and transmittance shift for plasmonic sensing applications. J. Phys. D Appl. Phys. 50(4), 045105 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Y.-F.C. Chau, C.-T.C. Chao, J.-Y. Rao, H.-P. Chiang, C.M. Lim, R.C. Lim, N.Y. Voo, Tunable optical performances on a periodic array of plasmonic bowtie nanoantennas with hollow cavities. Nanoscale Res. Lett. 11(1), 411 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    M. Grelier, F. Linot, A. Lepage, X. Begaud, J. LeMener, M. Soiron, Analytical methods for AMC and EBG characterizations. Appl. Phys. A 103(3), 805–808 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Y.-F.C. Chau, J.-C. Jiang, C.-T.C. Chao, H.-P. Chiang, C.M. Lim, Manipulating near field enhancement and optical spectrum in a pair-array of the cavity resonance based plasmonic nanoantennas. J. Phys. D Appl. Phys. 49(47), 475102 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    N. Kumara, Y.-F.C. Chau, J.-W. Huang, H.J. Huang, C.-T. Lin, H.-P. Chiang, Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal nanoparticle pairs with different core patterns for biosensor and solar cell applications. J. Opt. 18(11), 115003 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    H.-L. Yang, W. Yao, Y. Yi, X. Huang, S. Wu, B. Xiao, A dual-band low-profile metasurface-enabled wearable antenna for WLAN devices. Progress Electromagn. Res. C 61, 115–125 (2016)CrossRefGoogle Scholar
  32. 32.
    H. Malekpoor, S. Jam, Improved radiation performance of low profile printed slot antenna using wideband planar AMC surface. IEEE Trans. Antennas Propag. 64(11), 4626–4638 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    X. Liu, Y. Di, H. Liu, Z. Wu, M.M. Tentzeris, A planar windmill-like broadband antenna equipped with artificial magnetic conductor for off-body communications. IEEE Antennas Wirel. Propag. Lett. 15, 64–67 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    F. Wang, T. Arslan, A wearable ultra-wideband monopole antenna with flexible artificial magnetic conductor, in Antennas & propagation conference (LAPC), 2016 Loughborough, IEEE, 2016, pp. 1–5Google Scholar
  35. 35.
    S. Shahid, M. Rizwan, M. Abbasi, M. Tarar, S. Abbas, Bend Profiling of textile antenna for body centric wireless communication (pre published copy 2014).Google Scholar
  36. 36.
    CST MWS Accessed 18 Feb 2019.
  37. 37.
    K. Agarwal, Y.-X. Guo, B. Salam, Wearable AMC backed near-endfire antenna for on-body communications on latex substrate. IEEE Trans. Compon. Packag. Manuf. Technol. 6(3), 346–358 (2016)CrossRefGoogle Scholar
  38. 38.
    M. Mantash, A.-C. Tarot, S. Collardey, K. Mahdjoubi, Investigation of lexible textile antennas and AMC relectors. Int. J. Antennas Propag. 2012, 1–10 (2012)CrossRefGoogle Scholar
  39. 39.
    N. Chahat, M. Zhadobov, R. Sauleau, K. Mahdjoubi, Improvement of the on-body performance of a dual-band textile antenna using an EBG structure, in Antennas and Propagation Conference (LAPC), 2010 Loughborough, IEEE, 2010, pp. 465–468Google Scholar
  40. 40.
    P. Prakash, M.P. Abegaonkar, A. Basu, S.K. Koul, Gain enhancement of a CPW-fed monopole antenna using polarization-insensitive AMC structure. IEEE Antennas Wirel. Propag. Lett. 12, 1315–1318 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    C. Joshi, A.C. Lepage, J. Sarrazin, X. Begaud, Enhanced broadside gain of an ultrawideband diamond dipole antenna using a hybrid reflector. IEEE Trans. Antennas Propag. 64(7), 3269–3274 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    G. Kumar Pandey, H. Shankar Singh, M. Kumar Meshram, Investigations of triple band artificial magnetic conductor back plane with UWB antenna, Microw. Opt. Technol. Lett. 58(8), 1900–1906 (2016)CrossRefGoogle Scholar
  43. 43.
    A. Mersani, O. Lotfi, J.M. Ribero, Design of a textile antenna with artificial magnetic conductor for wearable applications. Microw. Opt. Technol. Lett. 60(6), 1343–1349 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringErciyes UniversityKayseriTurkey
  2. 2.Fotonik Technology and EngineeringErciyes Technopark A.S.KayseriTurkey
  3. 3.Electronics and AutomationHitit University, Voc. High SchoolCorumTurkey
  4. 4.Institute of Accelerator TechnologiesAnkara UniversityGolbasiTurkey
  5. 5.TUBİTAK Space Technologies Research InstituteÇankayaTurkey
  6. 6.Nokta Detection Technologies R&D CenterSancaktepeTurkey

Personalised recommendations