Advertisement

Applied Physics A

, 125:587 | Cite as

Study of the effects of both film thickness and annealing time on CuxSyOz thin films for the possibility of usage as solar control coatings

  • S. H. MohamedEmail author
  • N. M. A. Hadia
  • M. A. Awad
  • Mohamed Ismail Hafez
Article

Abstract

CuxSyOz thin films with various thicknesses were prepared by thermal evaporation. The structural, morphological, electrical and optical characteristics are examined for possible usage as solar control coatings on cars and architectural windows. The effect of thermal annealing on CuxSyOz films was examined for the thick film of 734 nm at 550 °C. The annealing was done for various annealing times of 2, 4 and 6 h. Energy-dispersive analysis of X-ray (EDAX) was used to evaluate the chemical composition of the as-prepared and annealed films. X-ray diffraction (XRD) elucidated the presence of hexagonal CuS and orthorhombic Cu2S together with a small contribution of the orthorhombic CuSO4 phase for the thicker films ( ≥ 241 nm). With increase in the annealing time, the hexagonal CuS and orthorhombic Cu2S peaks disappeared. The morphology of the films is strongly dependent on both thickness and annealing time. By controlling the film thickness, the transmission of the NIR region can be brought to zero, whereas adequate transmission, 6–27%, in the visible spectral region was maintained. After annealing, the transmittance increased while the reflection decreased. The optical band gap and the optical constants of the annealed films were also studied. It was found that the values can differ depending on the annealing time. The as-prepared CuxSyOz films behaves as metallic materials. It is found that room temperature resistivity decreased as the film thickness increased, while it increased with annealing.

Notes

References

  1. 1.
    H. Li, L. Sun, Y. Zhao, T. Tan, Y. Zhang, Appl. Surf. Sci. 466, 309–319 (2019)ADSCrossRefGoogle Scholar
  2. 2.
    F.A. Sabah, N.M. Ahmed, Z. Hassan, H.S. Rasheed, Sensor Actuat. A Phys. 249, 68–76 (2016)CrossRefGoogle Scholar
  3. 3.
    Z. Jin, Y. Li, J.C. Yu, J. Chem. Educ. 94, 476–479 (2017)CrossRefGoogle Scholar
  4. 4.
    H. Hu, O. Gomez-Daza, L. Baños, Sol. Energy Mater. Sol. Cells 56, 57–65 (1998)CrossRefGoogle Scholar
  5. 5.
    M. Pal, N.R. Mathews, E. Sanchez-Mora, U. Pal, F. Paraguay-Delgado, X. Mathew, J. Nanoparticle Res. 17, 1–12 (2015)CrossRefGoogle Scholar
  6. 6.
    J.S. Chung, H.J. Sohn, J. Power Sourc. 108, 226–231 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    N.P. Huse, A.S. Dive, K.P. Gattu, R. Sharma, Mater. Sci. Semicond. Process. 67, 62–68 (2017)CrossRefGoogle Scholar
  8. 8.
    R.E. Agbenyeke, B.K. Park, T.-M. Chung, C.G. Kim, J.H. Han, Appl. Surf. Sci. 456, 501–506 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    J. Liu, Z. Wu, K. Zhu, Z. Li, B. Feng, Q. Gu, P. Liu, S. Zhang, Y. You, B. Wang, J. Wang, J. Qiu, J. Alloys Compd. 685, 266–271 (2016)CrossRefGoogle Scholar
  10. 10.
    R. Mandal, G. Basu, B. Ghosh, Mater. Today Proc. 5, 23099–23106 (2018)CrossRefGoogle Scholar
  11. 11.
    K. Anuar, Z. Zainal, M.Z. Hussein, N. Saravanan, I. Haslina, Sol. Energy Mater. Sol. Cells 73, 351–365 (2002)CrossRefGoogle Scholar
  12. 12.
    S. Deng, Y. Shen, D. Xie, Y. Lu, X. Yu, L. Yang, X. Wang, X. Xia, J. Tu, J. Energy Chem. 39, 61–67 (2019)CrossRefGoogle Scholar
  13. 13.
    I. Grozdanov, M. Najdoski, J. Solid State Chem. 114, 469 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    A. Bollero, M. Grossberg, B. Asenjo, M.T. Gutiérrez, Surf. Coat. Technol. 204, 593–600 (2009)CrossRefGoogle Scholar
  15. 15.
    G. Lakhotiya, N. Belsare, A. Rana, V. Gupta, Curr. Appl. Phys. 19, 394–399 (2019)ADSCrossRefGoogle Scholar
  16. 16.
    G. Liu, T. Schulmeyer, J. Brotz, A. Klein, W. Jaegermann, Thin Solid Films 431–432, 477–482 (2003)CrossRefGoogle Scholar
  17. 17.
    F.A. Sabah, N.M. Ahmed, Z. Hassan, H.S. Rasheed, Procedia Chem. 19, 15–20 (2016)CrossRefGoogle Scholar
  18. 18.
    P. More, S. Dhanayat, K. Gattu, S. Mahajan, D. Upadhye, R. Sharma, AIP Conf. Proc. 1728, 020489 (2016)CrossRefGoogle Scholar
  19. 19.
    V.S. Taur, R.A. Joshi, A.V. Ghule, R. Sharma, Renew. Energy 38, 219–223 (2012)CrossRefGoogle Scholar
  20. 20.
    S. Wang, Q. Huang, X. Wen, X.-Y. Li, S. Yang, Phys. Chem. Chem. Phys. 4, 3425–3429 (2002)CrossRefGoogle Scholar
  21. 21.
    T.S. De Velde, J. Dieleman, Philips Res. Rep. 28, 573 (1973)Google Scholar
  22. 22.
    M.A. Awad, N.M.A. Hadia, Optik 142, 334 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Jiang, N. Bahlawane, J. Alloys Compd. 485, L52–L55 (2009)CrossRefGoogle Scholar
  24. 24.
    Z.H. Dughaish, S.H. Mohamed, Indian J. Phys. 87, 741–746 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    A. El-Denglawey, M.M. Makhlouf, M. Dongol, Results Phys. 10, 714–720 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    CRC, Handbook of Chemistry and Physics, 61st, ed. by Robert C. Weast (1980-1981), p. D-70Google Scholar
  27. 27.
    G. Knuyt, C. Quaeyhaegens, J. D’Haen, L.M. Stals, Phys. Status Solidi B 195, 179 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    S.H. Mohamed, J. Phys. D Appl. Phys. 43(035406), 8 (2010)Google Scholar
  29. 29.
    G. Knuyt, C. Quaeyhaegens, J. D’Haen, L.M. Stals, Thin Solid Films 258, 159 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    P.B. Barna, M. Adamik, Thin Solid Films 317, 27 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    V.V.V.N.S.R. Rao, K.P. Abraham, Metall. Trans. 2, 2464 (1971)Google Scholar
  32. 32.
    J.G. Dunn, C. Muzenda, Thermochim. Acta 369, 117–123 (2001)CrossRefGoogle Scholar
  33. 33.
    R. Saxena, M.J. Frederick, G. Ramanath, W.N. Gill, J.L. Plawsky, Phys. Rev. B 72, 115425 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    D.G. Gromov, S.A. Gavrilov, E.N. Redichev, S.V. Dubkov, Trends Phys. Chem. 14, 45 (2010)Google Scholar
  35. 35.
    B. Ren, L. Wang, J. Huang, K. Tang, Y. Yang, L. Wang, Vacuum 112, 70–72 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    M.S. Alqahtani, N.M.A. Hadia, S.H. Mohamed, Optik 173, 101–109 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    M.A. Rafea, A.A.M. Farag, N. Roushdy, Mater. Res. Bull. 47, 257–266 (2012)CrossRefGoogle Scholar
  38. 38.
    A. Bennouna, E.L. Ameziane, Sol. Energy Mater. 22, 201–214 (1991)CrossRefGoogle Scholar
  39. 39.
    D.H. Tassis, C. Dimitriadis, J. Brini, G. Kamarinos, A. Birbas, J. Appl. Phys. 85, 4091–4095 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    Y.B. He, A. Polity, I. Österreicher, D. Pfisterer, R. Gregor, B.K. Meyer, M. Hardt, Phys. B Condens. Matter 308–310, 1069–1073 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    C.J. Diliegros-Godines, D.I. Lombardero-Juarez, R. Machorro-Mejía, R.S. González, M. Pal, Opt. Mater. 91, 147–154 (2019)ADSCrossRefGoogle Scholar
  42. 42.
    M. Ramya, S. Ganesan, Int. J. Pure Appl. Phys. 6, 243–249 (2010)Google Scholar
  43. 43.
    A.C. Rastogi, S. Salkalachen, V.G. Bhide, Thin Solid Films 52, 1–10 (1978)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • S. H. Mohamed
    • 1
    Email author
  • N. M. A. Hadia
    • 1
    • 2
  • M. A. Awad
    • 1
  • Mohamed Ismail Hafez
    • 1
  1. 1.Physics Department, Faculty of ScienceSohag UniversitySohâgEgypt
  2. 2.Department of Physics, College of ScienceJouf UniversityJoufSaudi Arabia

Personalised recommendations