Advertisement

Applied Physics A

, 125:598 | Cite as

PVP-assisted hydrothermal synthesis and photocatalytic activity of single-crystalline BiFeO3 nanorods

  • Xiaoyi LiEmail author
  • Zhixian Tang
  • Haidong Ma
  • Fan Wu
  • Ronghua Jian
Article
  • 15 Downloads

Abstract

One-dimensional, single-crystalline bismuth ferrite (BiFeO3) nanorods were successfully prepared by polyvinylpyrrolidone-assisted hydrothermal process. The crystal structure and morphology of the as-prepared BiFeO3 sample were characterized by X-ray diffraction (XRD), field emission scanning electron microscope and transmission electron microscopy. The XRD analysis reveals that single-phase BiFeO3 sample was obtained. Morphology observation shows that the as-formed BiFeO3 nanoparticles are the shape of nanorods. The band gap of the as-prepared BiFeO3 nanorods was identified by ultraviolet–visible diffuse reflectance spectrum. Meanwhile, the photocatalytic properties of the as-prepared BiFeO3 nanorods were evaluated by degrading Rhodamine B. The result revealed that the as-prepared BiFeO3 nanorods exhibit photocatalytic activity under visible light irradiation (λ ≥ 400 nm).

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11847315), Educational Commission of Zhejiang Province of China (Grant No. Y201737491) and Huzhou University’Scientific Research Project (Grant No. 2017XJXM45).

References

  1. 1.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719–1722 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    G. Catalan, J.F. Scott, Adv. Mater. 21, 2463–2485 (2009)CrossRefGoogle Scholar
  3. 3.
    S. Fusil, V. Garcia, A. Barthélémy, M. Bibes, Annu. Rev. Mater. Res. 44, 91–116 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    N. Zhang, D. Chen, F. Niu, S. Wang, L.S. Qin, Y.X. Huang, Sci. Rep. 6, 26467 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    S. Li, Y.H. Lin, B.P. Zhang, Y. Wang, C.W. Nan, J. Phys. Chem. C 114, 2903–2908 (2010)CrossRefGoogle Scholar
  6. 6.
    H. Maleki, J. Mater. Sci. 29, 11860–11869 (2018)Google Scholar
  7. 7.
    H.C. Wang, Y.H. Lin, Y.N. Feng, Y. Shen, J. Electroceram. 31, 271–274 (2013)CrossRefGoogle Scholar
  8. 8.
    F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou, J.M. Liu, Adv. Mater. 19, 2889–2892 (2007)CrossRefGoogle Scholar
  9. 9.
    W. Wang, N. Li, Y. Chi, Y. Li, W. Yan, X. Li, C. Shao, Ceram. Int. 39, 3511–3518 (2013)CrossRefGoogle Scholar
  10. 10.
    W. Ji, K. Yao, Y.F. Lim, Y.C. Liang, A. Suwardi, Appl. Phys. Lett. 103, 062901 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Y.N. Huo, Y. Jin, Y. Zhang, J. Mol. Catal. A. 331, 15–20 (2010)CrossRefGoogle Scholar
  12. 12.
    Y.P. Lv, J. Xing, C.C. Zhao, D.M. Chen, J.J. Dong, H.Y. Hao, X.W. Wu, Z.Y. Zheng, J. Mater. Sci. 26, 1525–1532 (2015)Google Scholar
  13. 13.
    F. Niu, T. Gao, N. Zhang, Z. Chen, Q.L. Huang, L.S. Qin, X.G. Sun, Y.X. Huang, J. Nanosci. Nanotechno. 15, 9693–9698 (2015)CrossRefGoogle Scholar
  14. 14.
    S. Moharana, M.K. Mishra, M. Chopkar, R.N. Mahaling, Polym. Bull. 74, 3707–3719 (2017)CrossRefGoogle Scholar
  15. 15.
    G.Y. He, J.H. Zhang, Y. Hu, Z.G. Bai, C.H. Wei, Appl. Catal. B 250, 301–312 (2019)CrossRefGoogle Scholar
  16. 16.
    D. Wang, A. Pierre, M.G. Kibria, K. Cui, X. Han, K.H. Bevan, H. Guo, S. Paradis, A.R. Hakima, Z. Mi, Nano. Lett. 11, 2353–2357 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    X.H. Zhang, H.Y. Liu, B. Zheng, Y.H. Lin, D.P. Liu, C.W. Nan, J. Nanomater. 2013, 1–7 (2013)Google Scholar
  18. 18.
    S. Li, J.M. Zhang, M.G. Kibria, Z. Mi, M. Chaker, D.L. Ma, R. Nechache, F. Rosei, Chem. Commun. 49, 5856–5858 (2013)CrossRefGoogle Scholar
  19. 19.
    I. Hochbaum, P. Yang, Chem. Rev. 110, 527–546 (2010)CrossRefGoogle Scholar
  20. 20.
    B. Liu, ZDu Hu, Chem. Comm. 47, 8166–8168 (2011)CrossRefGoogle Scholar
  21. 21.
    S. Li, R. Nechache, C. Harnagea, L. Nikolova, F. Rosei, Appl. Phys. Lett. 101, 192903 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    L. Wu, W.B. Sui, C.H. Dong, C. Zhang, C.J. Jiang, Appl. Surf. Sci. 384, 368–375 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    X.Y. Zhang, C.W. Lai, X. Zhao, D.Y. Wang, J.Y. Da, Appl. Phys. Lett. 87, 143102 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    X. Xu, T. Qian, G. Zhang, T. Zhang, G. Li, W. Wang, X. Li, Chem. Lett. 36, 112–113 (2007)CrossRefGoogle Scholar
  25. 25.
    S.H. Xie, J.Y. Li, R. Proksch, Y.M. Liu, Y.C. Zhou, Y.Y. Liu, Y. Ou, L.N. Lan, Y. Qiao, Appl. Phys. Lett. 93, 222904 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    K. Prashanthi, R. Gaikwad, T. Thundat, Nanotechnol. 24, 505710 (2013)CrossRefGoogle Scholar
  27. 27.
    C.L. Fu, F. Sun, J.X. Hao, R.L. Gao, W. Cai, G. Chen, X.L. Deng, J Mater Sci 27, 8242–8246 (2016)Google Scholar
  28. 28.
    T.T. Carvalho, P.B. Tavares, Mater. Lett. 62, 3984–3986 (2008)CrossRefGoogle Scholar
  29. 29.
    X. Wang, W. Mao, Q. Zhang, Q. Wang, Y. Zhu, J. Zhang, T. Yang, J. Yang, X.A. Li, W. Huang, J. Alloys Compd. 677, 288–293 (2016)CrossRefGoogle Scholar
  30. 30.
    F. Qin, H.P. Zhao, G.F. Li, H. Yang, J. Li, R.M. Wang, Y.L. Liu, J.C. Hu, H.Z. Sun, R. Chen, Nanoscale 6, 5402–5409 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    X.F. Wang, W.W. Mao, Q.X. Zhang, Q. Wang, Y.Y. Zhu, J. Zhang, T. Yang, J.P. Yang, X. Li, W. Huang, J. Alloys Compd. 667, 288–293 (2016)CrossRefGoogle Scholar
  32. 32.
    J.Y. Wang, Y.W. Wei, J.J. Zhang, L.D. Ji, Y.X. Huang, Z. Chen, Mater. Lett. 124, 242–244 (2014)CrossRefGoogle Scholar
  33. 33.
    R. Dhanalakshmi, M. Muneeswaran, P.R. Vanga, M. Ashok, N.V. Giridharan, Appl. Phys. A 122, 1–14 (2016)CrossRefGoogle Scholar
  34. 34.
    S. Falahatnezhad, H. Maleki, J. Mater. Sci. 29, 17360 (2018)Google Scholar
  35. 35.
    C. Clementi, C. Miliani, G. Verri, S. Sotiropoulou, A. Romani, B.G. Brunetti, A. Sqamellotti, Appl. Spectrosc. 63, 1323–1329 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    F. Niu, D. Chen, L.S. Qin, T. Gao, N. Zhang, S. Wang, Z. Chen, J.Y. Wang, X.G. Sun, Y.X. Huang, Sol. Energy Mater. Sol. Cells 143, 386–396 (2015)CrossRefGoogle Scholar
  37. 37.
    X.S. Xu, T.V. Brinzari, S. Lee, Y.H. Chu, L.W. Martin, A. Kumar, S. McGill, R.C. Rai, R. Ramesh, V. Gopalan, S.W. Cheong, J.L. Musfeldt, Phys. Rev. B 79, 134425 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    M.D.L.R. Peralta, U. Pal, R.S. Zeferino, A.C.S. Appl, Mater. Interfaces 4, 4807–4816 (2012)CrossRefGoogle Scholar
  39. 39.
    Y. Zhang, Z.Y. Cai, X.M. Ma, Phys B 479, 101–106 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    Y. Liu, R.Z. Zuo, S.S. Qi, J Mol Catal A: Chem 376, 1–6 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    X.M. Chen, H. Zhang, T. Wang, F.F. Wang, W.Z. Shi, Phys. Status Solidi A 209, 1456–1460 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    L.S. Mende, J.L. MacManus-Driscoll, Mater. Today 10, 40–48 (2007)CrossRefGoogle Scholar
  43. 43.
    L. Ge, C.C. Han, J. Liu, Y.F. Li, Appl. Catal. A 409–410, 215–222 (2011)CrossRefGoogle Scholar
  44. 44.
    S. Khanchandani, S. Kundu, A. Patra, A.K. Ganguli, J. Phys. Chem. C 116, 23653–23662 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of ScienceHuzhou UniversityHuzhouPeople’s Republic of China

Personalised recommendations