Advertisement

Applied Physics A

, 125:588 | Cite as

Study of the thermal diffusivity of nanofluids containing SiO2 decorated with Au nanoparticles by thermal lens spectroscopy

  • Ángel Netzahual-Lopantzi
  • José Francisco Sánchez-Ramírez
  • José Luis Jiménez-PérezEmail author
  • Delfino Cornejo-Monroy
  • Genaro López-Gamboa
  • Zormy Nacary Correa-Pacheco
Article
  • 35 Downloads

Abstract

In this work, silicon dioxide (SiO2) spheres and gold nanoparticles (Au) were prepared. The SiO2 was used as a platform to deposit the gold nanoparticles. The SiO2 structures were synthesized employing the Stöber method. Monodisperse spherical particles with mean size of 293 nm were observed by transmission electron microscopy (TEM). The gold nanoparticles were attached to the dielectric platform trough in situ reduction. The UV–Vis spectrum of SiO2–Au showed an absorption band in the visible region associated with the presence of the gold nanoparticles. The TEM micrographs confirmed decorated SiO2 spheres with the metallic nanoparticles of 5 nm in size. Nanofluid concentrations of 0.1–0.6 mg/ml of SiO2 decorated with Au nanoparticles dispersed in water were prepared. The functional groups of SiO2-functionalized spheres were followed by FTIR. The formation of gold nanoparticles was evidenced by UV–Vis spectroscopy. The crystalline structure of SiO2 spheres and SiO2 decorated with Au nanoparticles was determined by XRD. The thermal diffusivity as a function of concentration using the mode-mismatched thermal lens (TL) spectroscopy was studied. The results of TL spectroscopy showed an increase in the thermal diffusivity with an increase of SiO2 decorated with Au nanoparticle concentration in the nanofluid.

Keywords

Thermal diffusivity SiO2 decorated Au Nanoparticles Thermal lens 

Notes

References

  1. 1.
    C. Xue, S. Jia, J. Zhang, L. Tian, Thin Solid Films 517, 4593 (2009)CrossRefADSGoogle Scholar
  2. 2.
    S. Ammar, K. Ramesh, B. Vengadaesvaran, S. Ramesh, A. Arof, Electrochim. Acta 220, 417 (2016)CrossRefGoogle Scholar
  3. 3.
    Z. Fanglong, X. Qun, F. Qianqian, L. Rangtong, L. Kejing, Surf. Coat. Tech. 294, 90 (2016)CrossRefGoogle Scholar
  4. 4.
    I. Kim, E. Joachim, H. Choi, K. Kim, Nanomed-Nanotechnol. 11, 1407 (2015)CrossRefGoogle Scholar
  5. 5.
    W. Stöber, A. Fink, J. Colloid Interf. Sci. 26, 62 (1968)CrossRefADSGoogle Scholar
  6. 6.
    I. Rahman, P. Vejayakumaran, C. Sipaut, J. Ismail, C. Chee, Mat. Chem. Phys. 114, 328 (2009)CrossRefGoogle Scholar
  7. 7.
    I. Tavman, A. Turgui, M. Chirtoc, K. Hadjov, O. Fudym, S. Tavman, Heat Transfer Res. 41(3), 209 (2010)CrossRefGoogle Scholar
  8. 8.
    A. Abdelrazek, O. Alawi, S. Kazi, N. Yusoff, Z. Chowdhury, A. Sarhan, Int. Commun. Heat Mass Transfer 95, 161 (2018)CrossRefGoogle Scholar
  9. 9.
    E. Shahriarr, A. Bahrami, M. Varnamkaste, K. Behzad, SYLWAN 158(6), 333 (2015)Google Scholar
  10. 10.
    J. Jhon, L. Thomas, A. Kurian, A. George, R. Soc. Chem. 6, 62390–62398 (2016)Google Scholar
  11. 11.
    Z. Gu, R. Horie, S. Kubo, Y. Yamada, A. Fujishima, O. Sato, Angew Chem. Int. 41, 1153 (2002)CrossRefGoogle Scholar
  12. 12.
    A. Convertino, M. Cuscunà, F. Martelli, M. Manera, R. Rella, ACS 118, 685 (2014)Google Scholar
  13. 13.
    J. Kah, R. Wang, J. Song, T. White, S. Mhaisalkar, I. Ahmad, C. Sheppard, M. Olivo, Gold Bull. 41(1), 23 (2008)CrossRefGoogle Scholar
  14. 14.
    L. Wang, T. Cheang, S. Wang, Z. Hu, Z. Xing, W. Qu, A. Xu, J. Mater. Res. 27(18), 2425 (2012)CrossRefADSGoogle Scholar
  15. 15.
    A. Colombelli, M. Manera, A. Taurino, M. Catalano, A. Convertino, R. Rella, Sensors Actuat. B-Chem. 226, 589 (2016)CrossRefGoogle Scholar
  16. 16.
    J.L. Jiménez-Pérez, J.F. Sánchez-Ramírez, D. Cornejo-Monroy, R. Guitierrez-Fuentes, J.A. Pescador-Rojas, A. Cruz-Orea, C. Jacinto, Int. J. Thermophys. 33, 69 (2012)CrossRefADSGoogle Scholar
  17. 17.
    R. Carbajal-Valdez, J.L. Jiménez-Pérez, A. Cruz-Orea, Z.N. Correa-Pacheco, M. Alvarado-Noguez, I.C. Romero-Ibarra, J.G. Mendoza-Alvarez, Thermochim. Acta 657, 66 (2017)CrossRefGoogle Scholar
  18. 18.
    J. Shen, R. Lowe, R. SnookR, Chem. Phys. 165, 385 (1992)CrossRefGoogle Scholar
  19. 19.
    T. Matsoukas, E. Gulari, J. Colloid Interf. Sci. 124(1), 252 (1988)CrossRefADSGoogle Scholar
  20. 20.
    D. Cornejo-Monroy, J.A. Pescador-Rojas, J.F. Sánchez-Ramírez, J.L. Herrera-Pérez, Rev. Sup. Vac. 22(3), 44 (2009)Google Scholar
  21. 21.
    A. Bertoluza, C. Fangano, M. Morelli, J. Non-Cryst, Solids 48, 117 (1982)Google Scholar
  22. 22.
    M. Gunde, Phys. B 292, 286 (2000)CrossRefADSGoogle Scholar
  23. 23.
    J.L. Montaño-Priede, J.P. Coelho, A. Guerrero-Martínez, O. Peña-Rogriguez, U. Pal, J. Phys. Chem-US 121, 9543 (2017)Google Scholar
  24. 24.
    S. Wang, D. Wang, S. Smart, J. Diniz da Costa, Sci. Rep-UK 5, 1 (2015)Google Scholar
  25. 25.
    S. Shou-Cang, K. Wai, L. Chia, D. Yuan-Cai, B. Tan, Mat. Res. Bull. 46, 1665 (2011)CrossRefGoogle Scholar
  26. 26.
    C. Chang, Y. Cheng, Y. Chuin-Tih, Appl. Catal. A-GEN 174, 13 (1998)CrossRefGoogle Scholar
  27. 27.
    A. Lanje, S. Sharma, R. Pode, J. Chem. Pharm. Res. 2(3), 478 (2010)Google Scholar
  28. 28.
    V. Lenart, N. Astrath, R. Turchiello, G. Goya, S. Gómez, J. Appl. Phys. 123(8), 1 (2018)CrossRefGoogle Scholar
  29. 29.
    D.H. Kumar, H.E. Patel, V.R.R. Umar, T. Sundararajan, T. Pradeep, S. Das, Phys. Rev. Lett. 93, 144301 (2004)CrossRefADSGoogle Scholar
  30. 30.
    Z. Zheng, L. Qiu, G. Su, D. Tang, Y. Liao, C. Yunfa, J. Nanopart. Res. 13(12), 6887 (2011)CrossRefADSGoogle Scholar
  31. 31.
    E. Shahriari, M. Moradi, M. Raeisi, J. Theor. Appl. Phys. 10(4), 259 (2016)CrossRefADSGoogle Scholar
  32. 32.
    X. Huang, M. Alexandria, J. Med. 49, 1 (2011)Google Scholar
  33. 33.
    N. Chandrasekharan, P. Kamat, J. Hu, G. Jones, J. Phys. Chem. B 104, 11103 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ángel Netzahual-Lopantzi
    • 1
  • José Francisco Sánchez-Ramírez
    • 2
  • José Luis Jiménez-Pérez
    • 1
    Email author
  • Delfino Cornejo-Monroy
    • 3
  • Genaro López-Gamboa
    • 4
  • Zormy Nacary Correa-Pacheco
    • 5
  1. 1.Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas-Instituto Politécnico NacionalMexicoMexico
  2. 2.Instituto Politécnico Nacional-CIBA, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-TepetitlaTlaxcalaMexico
  3. 3.Instituto de Ingeniería y Tecnología-Universidad Autónoma de Ciudad JuárezCiudad JuárezMexico
  4. 4.Universidad Politécnica del Valle de TolucaAlmoloya de JuárezMexico
  5. 5.CONACYT-Instituto Politécnico Nacional. Centro de Desarrollo de Productos BióticosMorelosMexico

Personalised recommendations