Advertisement

Applied Physics A

, 125:584 | Cite as

Effect of copper evolution on photoelectric properties of ZnO/Cu/ZnO hybrids

  • Zhaogang ZhangEmail author
Article
  • 42 Downloads

Abstract

ZnO/Cu/ZnO hybrids were prepared by sputtering method to systematically explore the effect of copper evolution on their photoelectric properties. The observed interfacial interaction between ZnO and Cu is indeed weak vdW rather than covalent, and their structural and photoelectric properties are strongly related to the Cu layer thicknesses. Moreover, the resistivity and optical transmittance of these hybrids gradually decrease as Cu thickness increases. The resistivity and peak transmittance at the optimum copper layer thickness (about 7 nm) are 1.78 × 10−4 Ω cm and 83%, respectively. These results can help insights into the interaction of ZnO-based sandwich structure composites, and pave the way for developing high-performance transparent conducting oxide (TCO) electrodes.

Notes

Acknowledgements

This work was supported by the JIANGXI Provincial Education Department of China (GJJ11700) and the development fund of Yichun University (2210818002).

References

  1. 1.
    L. Juhn-Jong, L. Zhi-Qing, Electronic conduction properties of indium tin oxide: single-particle and many-body transport. J Phys Condens Matter 26, 343201 (2014)CrossRefGoogle Scholar
  2. 2.
    J.F. Wager, Transparent electronics. Science 300, 1245–1246 (2003)CrossRefGoogle Scholar
  3. 3.
    K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300, 1269–1272 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    S.F. Leung, Q.P. Zhang, F. Xiu, D.L. Yu, J.C. Ho, D.D. Li et al., Light management with nanostructures for optoelectronic devices. J. Phys. Chem. Lett. 5, 1479–1495 (2014)CrossRefGoogle Scholar
  5. 5.
    Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condes. Matter. 16, R829–R858 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Y.S. Choi, J.W. Kang, D.K. Hwang, S.J. Park, Recent advances in ZnO-based light-emitting diodes. IEEE Trans. Electron Dev. 57, 26–41 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    C.G. Granqvist, Transparent conductors as solar energy materials: a panoramic review. Sol. Energy Mater. Sol. Cells 91, 1529–1598 (2007)CrossRefGoogle Scholar
  8. 8.
    U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan et al., A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 103 (2005)CrossRefGoogle Scholar
  9. 9.
    G.K. Paul, S. Bandyopadhyay, S.K. Sen, S. Sen, Structural, optical and electrical studies on sol-gel deposited Zr doped ZnO films. Mater Chem Phys. 79, 71–75 (2003)CrossRefGoogle Scholar
  10. 10.
    C. Guillen, J. Herrero, TCO/metal/TCO structures for energy and flexible electronics. Thin Solid Films 520, 1–17 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    D. Chen, J.G. Lu, R.K. Lu, L.X. Chen, Z.Z. Ye, High-performance GaN-based LEDs With AZO/ITO thin films as transparent contact layers. IEEE Trans. Electron Dev. 64, 2549–2555 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    C. Guillen, J. Herrero, ITO/metal/ITO multilayer structures based on Ag and Cu metal films for high-performance transparent electrodes. Sol. Energy Mater. Sol. Cells 92, 938–941 (2008)CrossRefGoogle Scholar
  13. 13.
    C. Guillen, J. Herrero, Transparent conductive ITO/Ag/ITO multilayer electrodes deposited by sputtering at room temperature. Opt Commun. 282, 574–578 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    D.R. Sahu, J.L. Huang, High quality transparent conductive ZnO/Ag/ZnO multilayer films deposited at room temperature. Thin Solid Films 515, 876–879 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    P.K. Chiu, W.H. Cho, H.P. Chen, C.N. Hsiao, J.R. Yang, Study of a sandwich structure of transparent conducting oxide films prepared by electron beam evaporation at room temperature. Nanoscale Res. Lett. 7, 5 (2012)CrossRefGoogle Scholar
  16. 16.
    L. Gong, J.G. Lu, Z.Z. Ye, Conductive Ga doped ZnO/Cu/Ga doped ZnO thin films prepared by magnetron sputtering at room temperature for flexible electronics. Thin Solid Films 519, 3870–3874 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    T. Dimopoulos, G.Z. Radnoczi, B. Pecz, H. Bruckl, Characterization of ZnO:Al/Au/ZnO: Al trilayers for high performance transparent conducting electrodes. Thin Solid Films 519, 1470–1474 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    I. Crupi, S. Boscarino, V. Strano, S. Mirabella, F. Simone, A. Terrasi, Optimization of ZnO:Al/Ag/ZnO: Al structures for ultra-thin high-performance transparent conductive electrodes. Thin Solid Films 520, 4432–4435 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Y.P. Wang, J.G. Lu, X. Bie, Z.Z. Ye, X. Li, D. Song et al., Transparent conductive and near-infrared reflective Cu-based Al-doped ZnO multilayer films grown by magnetron sputtering at room temperature. Appl. Surf. Sci. 257, 5966–5971 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    D.Y. Zhang, P.P. Wang, R. Murakami, X.P. Song, Effect of an interface charge density wave on surface plasmon resonance in ZnO/Ag/ZnO thin films. Appl. Phys. Lett. 96, 233114 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    H. Po-Shun, K. Dong Hoe, L. Jung-Kun, Electron emission of Au nanoparticles embedded in ZnO for highly conductive oxide. Appl. Phys. Lett. 104, 142102 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    M. Hovel, B. Gompf, M. Dressel, Dielectric properties of ultrathin metal films around the percolation threshold. Phys. Rev. B. 81, 035402 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    A.P. Ramirez, Oxide electronics emerge. Science 315, 1377–1378 (2007)CrossRefGoogle Scholar
  24. 24.
    D.Y. Zhang, H. Yabe, E. Akita, P.P. Wang, R. Murakami, X.P. Song, Effect of silver evolution on conductivity and transmittance of ZnO/Ag thin films. J. Appl. Phys. 109, 104318 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    D.R. Sahu, J.L. Huang, Properties of ZnO/Cu/ZnO multilayer films deposited by simultaneous RF and DC magnetron sputtering at different substrate temperatures. Microelectron J. 38, 299–303 (2007)CrossRefGoogle Scholar
  26. 26.
    Z.Z. You, G.J. Hua, Electrical, optical and microstructural properties of transparent conducting GZO thin films deposited by magnetron sputtering. J. Alloy. Compd. 530, 11–17 (2012)CrossRefGoogle Scholar
  27. 27.
    G. Murtaza, R. Ahmad, M.S. Rashid, M. Hassan, A. Hussnain, M.A. Khan et al., Structural and magnetic studies on Zr doped ZnO diluted magnetic semiconductor. Curr. Appl. Phys. 14, 176–181 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    K. Senthilkumar, M. Tokunaga, H. Okamoto, O. Senthilkumar, Y. Fujita, Hydrogen related defect complexes in ZnO nanoparticles. Appl. Phys. Lett. 97, 3 (2010)CrossRefGoogle Scholar
  29. 29.
    H. Han, N.D. Theodore, T.L. Alford, Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer. J. Appl. Phys. 103, 013708 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    D.R. Sahu, J.L. Huang, Dependence of film thickness on the electrical and optical properties of ZnO–Cu–ZnO multilayers. Appl. Surf. Sci. 253, 915–918 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    K. Sivaramakrishnan, T.L. Alford, Metallic conductivity and the role of copper in ZnO/Cu/ZnO thin films for flexible electronics. Appl. Phys. Lett. 94, 052104 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    W.C. Shih, K.S. Kao, D.L. Cheng, C.J. Chung, P.T. Hsieh, S.L. Ou, Characteristics of transparent conductive Al-doped ZnO and Ag–Ti tri-layer thin films prepared by multi-target magnetron sputtering. Surf. Coat. Technol. 219, 139–143 (2013)CrossRefGoogle Scholar
  33. 33.
    H. Han, J.W. Mayer, T.L. Alford, Band gap shift in the indium-tin-oxide films on polyethylene napthalate after thermal annealing in air. J. Appl. Phys. 100, 083715 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    G. Haacke, New figure of merit for transparent conductors. J. Appl. Phys. 47, 4086–4089 (1976)ADSCrossRefGoogle Scholar
  35. 35.
    J.H. Lee, K.Y. Woo, K.H. Kim, H.D. Kim, T.G. Kim, ITO/Ag/ITO multilayer-based transparent conductive electrodes for ultraviolet light-emitting diodes. Opt. Lett. 38, 5055–5058 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics Science and Engineering TechnologyYichun UniversityYichunChina

Personalised recommendations