Advertisement

Applied Physics A

, 125:610 | Cite as

Study on effect of dielectric gas type on electrical discharge erosion synthesis of tungsten carbide nanopowder

  • Farid Kabirinia
  • Mohammadreza ShabgardEmail author
  • Nooshin Salman Tabrizi
Article
  • 24 Downloads

Abstract

Due to the refractory nature of tungsten and tungsten carbide, one of the most practical methods for synthesizing nanoparticles of them is the electrical discharge erosion method. Here, production of binary tungsten carbide nano-alloy using discharge in nitrogen and argon gases has been studied. The effects of process parameters including the type of gas, gas flow rate, discharge current, and pulse on-time duration on powder production rate and size were investigated. Various characterization techniques were used to analyze the produced powder for each set of process parameters. Dynamic light scattering indicated that particle-size distribution under both of the gases ranges from 45 to 85 nm and nitrogen produces smaller final particles. X-ray diffraction showed that the powder resulted from both gases contain different phases namely, W2C, WC, and WC1-x, and two elements of tungsten and carbon. Scanning electron microscopy shows spherical morphology for the particles produced in both gases. Nitrogen overall performs better in terms of production rate under different circumstances.

Notes

References

  1. 1.
    J.P. Leo, Application of fine grained tungsten carbide based cemented carbides.Int J Refract Metal Hard Mater 13(5), 257–264 (1995).  https://doi.org/10.1016/0263-4368(95)92672-7 CrossRefGoogle Scholar
  2. 2.
    Z.Z. Fang, X. Wang, T. Ryu, K.S. Hwang, H.Y. Sohn, Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide—a review. Int J Refract Metal Hard Mater 27(2), 288–299 (2009).  https://doi.org/10.1016/j.ijrmhm.2008.07.011 CrossRefGoogle Scholar
  3. 3.
    Stewart DA, Shipway PH, McCartney DG (1999) Abrasive wear behaviour of conventional and nanocomposite HVOF-sprayed WC–Co coatings. Wear 225–229, Part 2 (0):789–798. doi:10.1016/s0043–1648(99)00032–0Google Scholar
  4. 4.
    Y-c Zhu, K. Yukimura, C-x Ding, P-y Zhang, Tribological properties of nanostructured and conventional WC–Co coatings deposited by plasma spraying. Thin Solid Films 388(1–2), 277–282 (2001).  https://doi.org/10.1016/s0040-6090(01)00805-7 ADSCrossRefGoogle Scholar
  5. 5.
    Z. Zhong, Maching of thermally sprayed WC-Co coatings. Mater Manuf Process16(1), 103–112 (2001).  https://doi.org/10.1081/amp-100103700 CrossRefGoogle Scholar
  6. 6.
    Wojciechowski S, Nowakowski Z, Majchrowski R, Królczyk GJAiM (2017) Surface texture formation in precision machining of direct laser deposited tungsten carbide. 5 (3):251–260. doi:10.1007/s40436-017-0188-3CrossRefGoogle Scholar
  7. 7.
    M.R. Shabgard, F. Kabirinia, Effect of dielectric liquid on characteristics of WC-Co powder synthesized using EDM process. Mater Manuf Process 29(10), 1269–1276 (2014).  https://doi.org/10.1080/10426914.2013.852207 CrossRefGoogle Scholar
  8. 8.
    M.I D (2010) Nanostructured WC–Co particles produced by carbonization of spark eroded powder: Synthesis and characterization. Int J Refract Metal Hard Mater 28 (4):523-528.  https://doi.org/10.1016/j.ijrmhm.2010.02.011 CrossRefGoogle Scholar
  9. 9.
    J.C. Kim, B.K. Kim, Synthesis of nanosized tungsten carbide powder by the chemical vapor condensation process. Scripta Mater 50(7), 969–972 (2004).  https://doi.org/10.1016/j.scriptamat.2004.01.015 CrossRefGoogle Scholar
  10. 10.
    L. Ming-Hong, Synthesis of nanophase tungsten carbide by electrical discharge machining. Ceram Int 31(8), 1109–1115 (2005).  https://doi.org/10.1016/j.ceramint.2004.12.004 CrossRefGoogle Scholar
  11. 11.
    Ajayan PM, Schadler LS, Braun PV (2006) Nanocomposite science and technology. 1 edition edn. Wiley, HobokenGoogle Scholar
  12. 12.
    Katiyar JK, Sharma AK, Pandey B (2018) Synthesis of iron-copper alloy using electrical discharge machining. Mater Manuf Process.  https://doi.org/10.1080/10426914.2018.1424997 CrossRefGoogle Scholar
  13. 13.
    Arzi M, Sabzehparvar M, Sadrnezhaad SK, Amin MHJAPA (2018) Nanostructural study of NiTi–TiO2–C core–shell nanoparticles generated by spark discharge method. Appl Phys A 124(9):625.  https://doi.org/10.1007/s00339-018-2050-2
  14. 14.
    Ramachandran M, Reddy RGJAiM (2013) Thermal plasma synthesis of SiC. Adv Manuf 1(1):50–61.  https://doi.org/10.1007/s40436-013-0011-8 CrossRefGoogle Scholar
  15. 15.
    Sindhu MK, Nandi D, Basak IJAiM (2018) Electric discharge phenomenon in dielectric and electrolyte medium. Adv Manuf.  https://doi.org/10.1007/s40436-018-0221-1 CrossRefGoogle Scholar
  16. 16.
    E. Hontañón, P. Jose María, G. Xiaoai, E. Richard, N. Hermann, K. Frank Einar, Influence of the inter-electrode distance on the production of nanoparticles by means of atmospheric pressure inert gas dc glow discharge. J Phys D Appl Phys 47(41), 415201 (2014).  https://doi.org/10.1088/0022-3727/47/41/415201 CrossRefGoogle Scholar
  17. 17.
    Tao J, Shih AJ, Ni J (2008) Experimental study of the dry and near-dry electrical discharge milling processes. J Manuf Sci Eng 130 (1):011002–011009.  https://doi.org/10.1115/1.2784276 CrossRefGoogle Scholar
  18. 18.
    Khatri BC, Rathod PP, Valaki JB, Sankhavara CD (2017) Insights into process innovation through ultrasonically agitated concentric flow dielectric streams for dry wire electric discharge machining. Mater Manuf Process.  https://doi.org/10.1080/10426914.2017.1415442 CrossRefGoogle Scholar
  19. 19.
    V.I. Marusina, G.A. Iskhakova, K.M. Rakhimyanov, Phase and particle size composition of carbides formed during electric spark erosion machining of tungsten. Powder Metall Met Ceram 31(10), 870–873 (1992).  https://doi.org/10.1007/BF00797511 CrossRefGoogle Scholar
  20. 20.
    N.S. Tabrizi, M. Ullmann, V.A. Vons, U. Lafont, A. Schmidt-Ott, Generation of nanoparticles by spark discharge. J Nanopart Res 11(2), 315–332 (2009).  https://doi.org/10.1007/s11051-008-9407-y CrossRefGoogle Scholar
  21. 21.
    N. Tabrizi, Q. Xu, N. van der Pers, U. Lafont, A. Schmidt-Ott, Synthesis of mixed metallic nanoparticles by spark discharge. J Nanopart Res 11(5), 1209–1218 (2009).  https://doi.org/10.1007/s11051-008-9568-8 CrossRefGoogle Scholar
  22. 22.
    M.R. Zachariah, M.J. Carrier, Molecular dynamics computation of gas-phase nanoparticle sintering: a comparison with phenomenological models. J Aerosol Sci 30(9), 1139–1151 (1999).  https://doi.org/10.1016/S0021-8502(98)00782-4 ADSCrossRefGoogle Scholar
  23. 23.
    A. Schmidt-Ott, New approaches to in situ characterization of ultrafine agglomerates. J Aerosol Sci 19(5), 553–563 (1988).  https://doi.org/10.1016/0021-8502(88)90207-8 ADSCrossRefGoogle Scholar
  24. 24.
    K.E.J. Lehtinen, M.R. Zachariah, Effect of coalescence energy release on the temporal shape evolution of nanoparticles. Phys Rev B 63(20), 205402 (2001).  https://doi.org/10.1103/PhysRevB.63.205402 ADSCrossRefGoogle Scholar
  25. 25.
    L. Liqing, S. Yingjie, Study of dry EDM with oxygen-mixed and cryogenic cooling approaches. Procedia CIRP 6, 344–350 (2013).  https://doi.org/10.1016/j.procir.2013.03.055 CrossRefGoogle Scholar
  26. 26.
    W.A. Gambling, F.W. Crawford, Minimum spark breakdown and glow voltages. Can J Phys 35(5), 562–569 (1957).  https://doi.org/10.1139/p57-064 ADSCrossRefGoogle Scholar
  27. 27.
    Barbalace K (2017) Periodic Table of Elements Sorted by 1st Ionization Potential (eV). EnvironmentalChemistry.com. https://EnvironmentalChemistry.com/yogi/periodic/1stionization.html. Accessed 23 Aug 2017
  28. 28.
    Jameson EC (2001) Electrical Discharge Machining. Society of Manufacturing Engineers, DearbornGoogle Scholar
  29. 29.
    McGeough JA (1988) Advanced Methods of Machining. Springer, New YorkGoogle Scholar
  30. 30.
    A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys Rev 56(10), 978–982 (1939).  https://doi.org/10.1103/PhysRev.56.978 ADSCrossRefzbMATHGoogle Scholar
  31. 31.
    Y. Zhong, J. Gao, Z. Wang, Z. Guo, Influence of particle size distribution on agglomeration/defluidization of iron powders at elevated temperature. ISIJ Int 57(4), 649–655 (2017).  https://doi.org/10.2355/isijinternational.ISIJINT-2016-487 CrossRefGoogle Scholar
  32. 32.
    Ekstrom BM (2005) Process Evaluation and Characterization of Tungsten Nitride as a Diffusion Barrier for Copper Interconnect Technology. University of North Texas, DentonGoogle Scholar
  33. 33.
    Miller WA (1880) Elements of Chemistry: Chemistry of carbon compounds. Longmans, HarlowGoogle Scholar
  34. 34.
    A. Kurlov, A. Gusev, Tungsten carbides and W-C phase diagram. Inorg Mater 42(2), 121–127 (2006).  https://doi.org/10.1134/S0020168506020051 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringUniversity of TabrizTabrizIran
  2. 2.Department of EnergyMaterials and Energy Research CenterKarajIran

Personalised recommendations