Advertisement

Applied Physics A

, 125:592 | Cite as

Structural, morphological, optical and magnetic properties of RF sputtered Co doped ZnO diluted magnetic semiconductor for spintronic applications

  • R. SiddheswaranEmail author
  • Rostislav Medlín
  • C. Esther Jeyanthi
  • S. Gokul Raj
  • R. V. Mangalaraja
Article
  • 46 Downloads

Abstract

This article reports the fabrication and characterization of thin films of pure and cobalt doped ZnO (Co at 4% and 7%), a transparent diluted magnetic semiconductor (DMS) grown on ‘Si’ and glass substrates by RF magnetron sputtering technique. The crystalline structure and phase of the grown thin films were analyzed by using X-ray diffraction (XRD) method which confirmed the hexagonal wurtzite structure of the ZnO with slight lattice strain and change in orientation of the planes. The XRD also confirmed that, the films exhibit prominent peaks of (1 0 1) and (1 0 3) with polycrystalline nature. The morphology of the grown thin films was investigated by scanning electron microscopy (SEM) which confirmed the variation of micro-structure and size of the polycrystalline film’s surface. The energy dispersive X-ray spectra (EDS) from SEM have confirmed the presence of constituent elements in the films and concentration (in %) of each element. The crystalline properties and morphology of the film’s cross-section were studied by high resolution transmission electron microscopy (HR-TEM). The average thickness of the films was found to be about 600 nm  from the cross-section electron microscopic images. The selected area electron diffraction (SAED) pattern from TEM was recorded for the Co (7%) doped ZnO film which has good polycrystalline quality. The optical transmittance of the films coated on corning glass substrates was investigated by UV–Visible spectrophotometer for pure, 4% and 7% Co doped ZnO films, which revealed the optical transparency of 85%, 75% and 65%, respectively. The room temperature ferromagnetism of the doped films was analysed by vibrating sample magnetometry and magneto optic Kerr effect. It was found that the ferromagnetic behaviour of films increases with ‘Co’ content and the results were discussed in detail.

Notes

Acknowledgements

The corresponding and first author R.S acknowledges Tamilnadu State Council for Science and Technology (TNSCST), India for the award Young Scientist Fellowship (YSF) scheme 2018–2019, No. TNSCST/YSFS/VR/01/2018-2019/7108, dated 25/05/2019 for the partial financial support to carry out the research work. One of the authors, R.M acknowledges the CEDAMNF project, Reg. No. CZ.02.1.01/0.0/0.0/15_003/0000358, co-funded by the ERDF as part of the MSMT, for the partial financial support towards the development of results.

References

  1. 1.
    M. Salavati-Niasari, N. Mir, F. Davar, ZnO nanotriangles: synthesis, characterization and optical properties. J. Alloy. Compd. 476, 908–912 (2009)CrossRefGoogle Scholar
  2. 2.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind et al., Room-Temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    N.H. Al-Hardan, M.J. Abdullah, N.M. Ahmed, F.K. Yam, A. Abdul Aziz, UV photodetector behavior of 2D ZnO plates prepared by electrochemical deposition. Superlattice Microstruct. 51, 765–771 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    A.A. Bergh, P.J. Dean, Light emitting diodes (Clarendon, Oxford, 1976). (Mir, Moscow, 1987) Google Scholar
  5. 5.
    H. Han, N.D. Theodore, T.L. Alford, Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer. J. Appl. Phys. 103, 013708 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    A.P. Abiyasa, S.F. Yu, S.P. Lau, E.S.P. Leong, H.Y. Yang, Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance. Appl. Phys. Lett. 90(23), 231106–231113 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    M. Salavati-Niasari, F. Davar, Z. Fereshteh, Synthesis and characterization of ZnO nanocrystals from thermolysis of new precursor. Chem. Eng. J. 146, 498–502 (2009)CrossRefGoogle Scholar
  8. 8.
    A.K. Babaheydari, M. Salavati-Niasari, A. Khansari, Solvent-less synthesis of zinc oxide nanostructures from Zn(salen) as precursor and their optical properties. Particuology 10, 759–764 (2012)CrossRefGoogle Scholar
  9. 9.
    M. Goudarzi, M. Mousavi-Kamazani, M. Salavati-Niasari, Zinc oxide nanoparticles: solvent-free synthesis, characterization and application as heterogeneous nanocatalyst for photodegradation of dye from aqueous phase. J. Mater. Sci. Mater. Electron. 28, 8423–8428 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Yousefi, E. Noori, D. Ghanbari, M. Salavati-Niasari, T. Gholami, A facile room temperature synthesis of zinc oxide nanostructure and its influence on the flame retardancy of poly vinyl alcohol. J. Cluster Sci. 25, 397–408 (2014)CrossRefGoogle Scholar
  11. 11.
    A.P. Bhirud, S.D. Sathaye, R.P. Waichal, L.K. Nikam, B.B. Kale, An eco-friendly, highly stable and efficient nanostructured p-type N-doped ZnO photocatalyst for environmentally benign solar hydrogen production. Green Chem. 14, 2790–2798 (2012)CrossRefGoogle Scholar
  12. 12.
    F. Soofivand, M. Salavati-Niasari, F. Mohandes, Novel precursor-assisted synthesis and characterization of zinc oxide nanoparticles/nanofibers. Mater. Lett. 98, 55–58 (2013)CrossRefGoogle Scholar
  13. 13.
    H. Cao, J.Y. Xu, E.W. Seelig, R.P.H. Chang, Microlaser made of disordered media. Appl. Phys. Lett. 76, 2997 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett. 72, 3270 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    H.Y. Xu, Y.C. Liu, Y.X. Liu, C.S. Xu, C.L. Shao, R. Mu, Ultraviolet electroluminescence from p-GaN/i-ZnO/n-ZnO heterojunction light-emitting diodes. Appl. Phys. B Laser Optic. 80(7), 871 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    P.F. Carcia, R.S. McLean, M.H. Reilly, G. Nunes, High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition. Appl. Phys. Lett. 82, 1117 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    H.Y. Xu, Y.C. Liu, R. Mu, C.L. Shao, Y.M. Lu, D.Z. Shen, X.W. Fan, F-doping effects on electrical and optical properties of ZnO nanocrystalline films. Appl. Phys. Lett. 86, 123107 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    M. Salavati-Niasari, F. Davar, A. Khansari, Nanosphericals and nanobundles of ZnO: Synthesis and characterization. J. Alloy. Compd. 509, 61–65 (2011)CrossRefGoogle Scholar
  19. 19.
    Y. Yang, S. Niu, D. Han, T. Liu, G. Wang, Y. Li, Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Adv. Energy Mater. 7, 1700555 (2017)CrossRefGoogle Scholar
  20. 20.
    V. Galstyan, E. Comini, C. Baratto, G. Faglia, G. Sberveglieri, Nanostructured ZnO chemical gas sensors. Ceram. Int. 41, 14239–14244 (2015)CrossRefGoogle Scholar
  21. 21.
    N. Mir, M. Salavati-Niasari, F. Davar, Preparation of ZnO nanoflowers and Zn glycerolate nanoplates using inorganic precursors via a convenient rout and application in dye sensitized solar cells. Chem. Eng. J. 181, 779–789 (2012)CrossRefGoogle Scholar
  22. 22.
    A.B. Djurisic, Y.H. Leung, A.M.C. Ng, Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Mater. Horiz. 1, 400 (2014)CrossRefGoogle Scholar
  23. 23.
    M. Salavati-Niasari, F. Davar, M. Mazaheri, Preparation of ZnO nanoparticles from [bis(acetylacetonato)zinc(II)]–oleylamine complex by thermal decomposition. Mater. Lett. 62, 1890–1892 (2008)CrossRefGoogle Scholar
  24. 24.
    J.K. Furdyna, Diluted magnetic semiconductors. J. Appl. Phys. 64, R29 (1988)ADSCrossRefGoogle Scholar
  25. 25.
    G. Mihály, M. Csontos, S. Bordács, I. Kézsmárki, T. Wojtowicz, X. Liu, B. Jankó, J.K. Furdyna, Anomalous hall effect in the (In, Mn)Sb dilute magnetic semiconductor. Phys. Rev. Lett. 100, 1–4 (2008)CrossRefGoogle Scholar
  26. 26.
    J.S. Kulkarni, O. Kazakova, J.D. Holmes, Dilute magnetic semiconductor nanowires. Appl. Phys. A 85, 277–286 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    C. Claude, A. Fert, F.N. Van Dau, The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    S.B. Ogale, Dilute doping, defects, and ferromagnetism in metal oxide systems. Adv. Mater. 22, 3125–3155 (2010)CrossRefGoogle Scholar
  29. 29.
    B.T. Jonker, Y.D. Park, B.R. Bennett, H.D. Cheong, G. Kioseoglou, A. Petrou, Robust electrical spin injection into a semiconductor heterostructure. Phys. Rev. B 62, 8180 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    I. Appelbaum, B. Huang, D.J. Monsma, Electronic measurement and control of spin transport in silicon. Nature 447, 295–298 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2, 673 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    S.A. Wolf, A.A. Awschalom, R.A. Buhrman, J.M. Daughton, S. Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: A spin-based electronics vision for the future. Science 294, 1488 (2001)Google Scholar
  34. 34.
    M. Hassanpour, H. Safardoust-Hojaghan, M. Salavati-Niasari, Degradation of methylene blue and Rhodamine B as water pollutants via green synthesized Co3O4/ZnO nanocomposite. J. Mol. Liq. 229, 293–299 (2017)CrossRefGoogle Scholar
  35. 35.
    B. Panigrahy, M. Aslam, D. Bahadur, Controlled optical and magnetic properties of ZnO nanorods by Ar ion irradiation. Appl. Phys. Lett. 98, 183109 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    P. Bandyopadhyay, A. Dey, R. Basu, S. Das, P. Nandy, Synthesis and characterization of copper doped zinc oxide nanoparticles and its application in energy conversion. Curr. Appl. Phys. 14, 1149–1155 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    F. Pan, C. Song, X. Liu, Y. Yang, F. Zeng, Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mater. Sci. Eng. R Rep. 62, 1–35 (2008)CrossRefGoogle Scholar
  38. 38.
    B.P. Kafle, S. Acharya, S. Thapa, S. Poudel, Structural and optical properties of Fe-doped ZnO transparent thin films. Ceram. Int. 42, 1133–1139 (2016)CrossRefGoogle Scholar
  39. 39.
    S.M. Hosseini, I.A. Sarsari, P. Kameli, H. Salamati, Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles. J. Alloy Compd. 640, 408–415 (2015)CrossRefGoogle Scholar
  40. 40.
    K. Sato, H. Katayama-Yoshida, First principles materials design for semiconductor spintronics. Semicond. Sci. Tech. 17, 367 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    P.A. Wolff, R.N. Bhatt. A.C. Durst, Polaron‐polaron interactions in diluted magnetic semiconductors. J. Appl. Phys. 79, 5196 (1996)ADSCrossRefGoogle Scholar
  42. 42.
    A. Kaminski, S. Das Sarma, Polaron percolation in diluted magnetic semiconductors. Phys. Rev. Lett. 88, 247202 (2002)Google Scholar
  43. 43.
    D. Akcan, S. Ozharar, E. Ozugurlu, L. Arda, The effects of Co/Cu Co-doped ZnO thin films: An optical study. J. Alloy. Compd. 797, 253–261 (2019)CrossRefGoogle Scholar
  44. 44.
    P. Shukla, S. Tiwari, S. Ram Joshi, V.R. Akshay, M. Vasundhara, S. Varma, J. Singh, A. Chanda, Investigation on structural, morphological and optical properties of Co-doped ZnO thin films. Phys. B Condens. Matter 550, 303–310 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    A. Ali, A. Luiz Pinto, R. Henda, R. Fagerberg, Influence of Co loading on structural and morphological properties of Co-doped ZnO thin films grown by pulsed electron beam ablation. J. Alloy. Compd. 731, 181–188 (2018)CrossRefGoogle Scholar
  46. 46.
    Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y.Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, H. Koinuma, High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties. Appl. Phys. Lett. 78, 3824 (2001)ADSCrossRefGoogle Scholar
  47. 47.
    S. Ge, B. Zhang, C. Yang, Characterization of Er-doped AlN films prepared by RF magnetron sputtering. Surf. Coat. Technol. 358, 404–408 (2019)CrossRefGoogle Scholar
  48. 48.
    C.-Y. Guo, X. Qi, RF magnetron sputter deposition and electrical properties of La and Y doped SrTiO3 epitaxial films. Mater. Des. 179, 107888 (2019)CrossRefGoogle Scholar
  49. 49.
    A. Zdyb, E. Krawczak, S. Gułkowski, The influence of annealing on the properties of ZnO: Al layers obtained by RF magnetron sputtering. Opto Electron Rev 26(3), 247–251 (2018)ADSCrossRefGoogle Scholar
  50. 50.
    H. Mehmood, G. Bektaş, İ. Yıldız, T. Tauqeer, H. Nasser, R. Turan, Electrical, optical and surface characterization of reactive RF magnetron sputtered molybdenum oxide films for solar cell applications. Mater. Sci. Semicond. Process. 101, 46–56 (2019)CrossRefGoogle Scholar
  51. 51.
    T. Welzel, K. Ellmer, The influence of the target age on laterally resolved ion distributions in reactive planar magnetron sputtering. Surf. Coat. Technol. 205, S294–S298 (2011)CrossRefGoogle Scholar
  52. 52.
    R. Siddheswaran, R. Medlin, P. Calta, P. Sutta, Preparation of Nc-Si/A-SiO2 multi-layer thin film specimens for TEM cross-section observation by Cryo Argon ion slicing. JOJ Mater. Sci. 1(5), 555574 (2017)Google Scholar
  53. 53.
    J.L. Lábár, Consistent indexing of a (set of) single crystal SAED pattern(s) with the process diffraction program. Ultramicroscopy 103, 237–249 (2005)CrossRefGoogle Scholar
  54. 54.
    T.F. Jaramillo, S. Baeck, A.K. Shwarsctein, K.S. Choi, G.D. Stucky, E.W. McFarland, J. Comb. Chem. 7, 264–271 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • R. Siddheswaran
    • 1
    Email author
  • Rostislav Medlín
    • 2
  • C. Esther Jeyanthi
    • 3
  • S. Gokul Raj
    • 4
  • R. V. Mangalaraja
    • 5
    • 6
  1. 1.PG & Research Department of PhysicsPachaiyappa’s College (affiliated by University of Madras)ChennaiIndia
  2. 2.New Technologies Research CentreUniversity of West Bohemia in PilsenPlzeňCzech Republic
  3. 3.Department of PhysicsPanimalar Engineering CollegeChennaiIndia
  4. 4.Department of PhysicsC. Kandaswami Naidu College for MenChennaiIndia
  5. 5.Advanced Ceramics and Nanotechnology Laboratory, Department of Materials EngineeringUniversity of ConcepcionConcepciónChile
  6. 6.Technological Development Unit (UDT)University of ConcepcionCoronelChile

Personalised recommendations