Applied Physics A

, 125:597 | Cite as

Self-assembly of nanotubular polyaniline via surfactant for high-performance electrochemical supercapacitor

  • Xiaobo Li
  • Yapeng He
  • Panpan Zhang
  • Hui HuangEmail author
  • Buming Chen
  • Zhongcheng Guo
Rapid communication


In this work, a high-performance nanotubular polyaniline was achieved by the self-assembly process, where the cationic surfactant acts as a self-degraded soft template. The nanotubular polyaniline not only exhibits high specific capacitance, low electron transfer resistance, but also presents excellent cycling stability. The specific capacitance of nanotubular polyaniline reaches a maximum of 426.9 F g−1 at 0.5 A g−1 and maintains the value as high as 288.0 F g−1 at 5 A g−1, the cycling stability with capability retention 87.5% after 2000 cycles at 1 A g−1. Meanwhile, the specific surface area of the nanotubular polyaniline samples is 55.0 m2 g−1 and electron transfer resistance is 1.04 Ω cm2. Such excellent performance stems from the nanotubular structure, which facilitates the ion/electron transfer and effectively alleviates the agglomeration to guarantee a good permeability with the electrolyte.



Thanks to the financial support from the National Natural Science Foundation of China (51504111, 51564029), China Postdoctoral Science Foundation (2018M633418), Applied Basic Research Program of Yunnan Province (2019FD066), Analysis and Testing Foundation of Kunming University of Science and Technology (2018T20172015, 2018M20172102038).


  1. 1.
    A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Renew. Sust. Energy Rev. 58, 1189 (2016)CrossRefGoogle Scholar
  2. 2.
    D.P. Dubal, O. Ayyad, V. Ruiz, P. Gomez-Romero, Chem. Soc. Rev. 44, 1777 (2015)CrossRefGoogle Scholar
  3. 3.
    J. Xu, W. Zhang, D. Hou, W. Huang, H. Lin, Chin. Chem. Lett. 28, 2295 (2017)CrossRefGoogle Scholar
  4. 4.
    A. Eftekhari, L. Li, Y. Yang, J. Power Sour. 347, 86 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Y. He, X. Wang, H. Huang, P. Zhang, B. Chen, Z. Guo, Appl. Surf. Sci. 469, 446 (2019)ADSCrossRefGoogle Scholar
  6. 6.
    J. Wang, J. Wang, Z. Kong, K. Lv, C. Teng, Y. Zhu, Adv. Mater. 29, 17030449 (2017)Google Scholar
  7. 7.
    Z. Fan, Z. Cheng, J. Feng, Z. Xie, Y. Liu, Y. Wang, J. Mater. Chem. A 5, 16689 (2017)CrossRefGoogle Scholar
  8. 8.
    F. Cui, Y. Huang, L. Xu, Y. Zhao, J. Lian, J. Bao, H. Li, Chem. Commun. 54, 4160 (2018)CrossRefGoogle Scholar
  9. 9.
    L. Fu, Q. Qu, R. Holze, V.V. Kondratiev, Y. Wu, J. Mater, Chem. A 25, 14919 (2019)Google Scholar
  10. 10.
    J. Wang, L. Dong, C. Xu, D. Ren, X. Ma, F. Kang, A.C.S. Appl, Mater. Interfaces 10, 10851 (2018)CrossRefGoogle Scholar
  11. 11.
    J. Zhao, Y. Li, X. Chen, H. Zhang, C. Song, Z. Liu, K. Zhu, K. Cheng, K. Ye, J. Yan, D. Cao, G. Wang, X. Zhang, Electrochim. Acta. 292, 458 (2018)CrossRefGoogle Scholar
  12. 12.
    X. Zhang, X. Meng, Q. Wang, B. Qin, L.E. Jin, Q. Cao, Mater. Lett. 217, 312 (2018)CrossRefGoogle Scholar
  13. 13.
    L. Zhang, W. Du, A. Nautiyal, Z. Liu, X. Zhang, Sci. China Mater. 61, 303 (2018)CrossRefGoogle Scholar
  14. 14.
    M. Wan, Adv. Mater. 20, 2926 (2010)CrossRefGoogle Scholar
  15. 15.
    Y. Ma, M. Ma, X. Yin, Q. Shao, N. Lu, Y. Feng, Y. Lu, E.K. Wujcik, X. Mai, C. Wang, Z. Guo, Polymer 156, 128 (2018)CrossRefGoogle Scholar
  16. 16.
    S. Grover, S. Goel, R.B. Marichi, V. Sahu, G. Singh, R.K. Sharma, Electrochim. Acta. 196, 131 (2016)CrossRefGoogle Scholar
  17. 17.
    T. Dai, X. Yang, Y. Lu, Nanotechnology. 17, 3028 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    L. Zhang, M. Wan, Adv. Funct. Mater. 13, 815 (2003)CrossRefGoogle Scholar
  19. 19.
    H. Dominguez, J. Colloid Interface Sci. 274, 665 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Wang, Kimura K, Dubin P L. Macromolecules 33, 3324 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    D. Huibers, T. Paul, Langmuir 15, 7546 (1999)CrossRefGoogle Scholar
  22. 22.
    W. Chen, R. Rakhi, H.N. Alshareef, J. Mater. Chem. A 1, 3315 (2013)CrossRefGoogle Scholar
  23. 23.
    G.H. Lim, H.J. Choi, J. Ind. Eng. Chem. 47, 51 (2017)CrossRefGoogle Scholar
  24. 24.
    T. Xiao, X. Wang, X. Wang, Z. Li, L. Zhang, P. Lv, J. Zhao, Mater. Lett. 230, 245 (2018)CrossRefGoogle Scholar
  25. 25.
    J. Yan, Y. Huang, C. Wei, N. Zhang, P. Liu, Compos. Part A Appl. Sci. Manuf. 99, 121 (2017)CrossRefGoogle Scholar
  26. 26.
    L. Wang, H. Huang, S. Xiao, D. Cai, Y. Liu, B. Liu, D. Wang, C. Wang, H. Li, Y. Wang, A.C.S. Appl, Mater. Interfaces 6, 14131 (2014)CrossRefGoogle Scholar
  27. 27.
    Y. Ma, M. Qiao, C. Hou, Y. Chen, M. Ma, H. Zhang, Q. Zhang, RSC Adv. 5, 103064 (2015)CrossRefGoogle Scholar
  28. 28.
    L. Lyu, H. Chai, K. Seong, C. Lee, J. Kang, W. Zhang, Y. Piao, Electrochim. Acta 291, 256 (2018)CrossRefGoogle Scholar
  29. 29.
    Q. Zhou, T. Wei, J. Yue, L. Sheng, Z. Fan, Electrochim. Acta 291, 234 (2018)CrossRefGoogle Scholar
  30. 30.
    H. Li, J. Song, L. Wang, X. Feng, R. Liu, W. Zeng, Z. Huang, Y. Ma, L. Wang, Nanoscale 9, 193 (2017)CrossRefGoogle Scholar
  31. 31.
    A. Tian, S. Zhao, Q. Lu, Ceram. Int. 44, 17007 (2018)CrossRefGoogle Scholar
  32. 32.
    A.D. Potphode, P. Sivaraman, S.P. Mishra, M. Patri, Electrochim. Acta 155, 402 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunmingChina
  2. 2.Kunming Hendera Science and Technology Co. LtdKunmingChina

Personalised recommendations