Advertisement

Applied Physics A

, 125:604 | Cite as

Bulk heterojunction polymer solar cell, using ZnO nanorods with various mass ratios of P3HT:PCBM blend as the active layer

  • Mehdi Ahmadi
  • Mohammad Shafiey DehajEmail author
  • Somayeh Ghazanfarpour
  • Samaneh Ghazanfarpour
Article
  • 12 Downloads

Abstract

The present study investigated the influence of employing various mass ratios of the P3HT:PCBM blend as an active layer using the doctor blade technique with a speed of 40 mm/s. ZnO nanostructure and ZnO nanorods (NRs) were utilized in an inverted bulk heterojunction organic solar cell as an electron transport layer. The temperature in annealing was 140 °C. The active layer played a significant role in increment hole mobility and balanced charge transport. The samples were examined by the X-ray diffraction, scanning electron microscopy, UV–visible transmission spectra. The use of P3HT:PCBM with a ratio of 1:0.9 on the top of the ZnO nanoparticles gave Jsc of 9.46 mm/s, Voc of 0.550 V, and a fill factor of 64.09% and resulted in a power conversion efficiency of 3.33%.

Notes

References

  1. 1.
    G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Morirty, K. Emery, Y. Yang, Nat. Mater. 4, 864 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger, Science 317, 222 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    S. Gunes, H. Neugebauer, N.S. Sariciftci, Chem. Rev. 107, 1104 (2007)CrossRefGoogle Scholar
  4. 4.
    S.H. Park, A. Roy, S. Beapre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Nat. Photonics 3, 297 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    L.M. Chen, Z. Hong, G. Li, Y. Yang, Adv. Mater. 21, 1434 (2009)CrossRefGoogle Scholar
  6. 6.
    G. Dennler, M.C. Schaber, C.J. Barbec, Adv. Mater. 21, 1103 (2009)CrossRefGoogle Scholar
  7. 7.
    C.J. Barbec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia, S.P. Williams, Adv. Mater. 22, 3839 (2010)CrossRefGoogle Scholar
  8. 8.
    Z.Q. Xu, J. Li, J.P. Yang, P.P. Cheng, J. Zho, S.T. Lee, Y.Q. Li, J.X. Tang, Appl. Phys. Lett. 98, 253303 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Y.J. Cheng, C.H. Hsieh, Y. He, C.S. Hsu, Y. Li, J. Am. Chem. Soc. 132, 17381 (2010)CrossRefGoogle Scholar
  10. 10.
    L.M. Chen, Z. Hong, G. Li, Y. Yang, Adv. Mater. 21, 434 (2009)CrossRefGoogle Scholar
  11. 11.
    M. Ahmadi, K. Mirabbaszadeh, M. Ketabchi, Electron. Mater. Lett. 9, 729 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    P. Junlabhuta, W. Mekprasartb, R. Noonurukb, Energy Proced. 56, 560 (2014)CrossRefGoogle Scholar
  13. 13.
    Y. Ning et al., J. Power Sources 195, 5806 (2010)CrossRefGoogle Scholar
  14. 14.
    S.C. Navale, I.S. Mulla, Mater. Sci. Eng. C 29, 1317 (2009)CrossRefGoogle Scholar
  15. 15.
    V. Manjula, M. Nirmala, K. Rekha, A. Anukaliani, Mater. Lett. 65, 1797 (2011)CrossRefGoogle Scholar
  16. 16.
    Z. Yuan, J. Yu, N. Wang, Y. Jiang, J. Mater. Sci. Mater. Electron. 22, 1730 (2011)CrossRefGoogle Scholar
  17. 17.
    K. Mirabbaszadeh, M. Ahmadi, M. Khosravi, R. Mokhtari, S. Salari, J. Inorg. Organomet. Polym. 23, 1219 (2013)CrossRefGoogle Scholar
  18. 18.
    Y.J. Lee, M.T. Lioyd, D.C. Olson, R.K. Grubbs, P. Lu, R.J. Davis, J.A. Voigt, J.W.P. Hsu, J. Phys. Chem. C 113, 15778 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, 455 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    J.X. Wang et al., Nanotechnology 17, 4995 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Q. Wan et al., Appl. Phys. Lett. 84, 3654 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Z. Fan, D. Wang, P.C. Chang, W.Y. Tseng, J.G. Lu, Appl. Phys. Lett. 85, 5923 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    Z. Fan, J.G. Lu, Appl. Phys. Lett. 86, 123510 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990)CrossRefGoogle Scholar
  25. 25.
    M. Ahmadi, S. Rashidi Dafeh, Chin. Phys. B 24, 117203 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    R.A.J. Janssen, J.C. Hummelen, N.S. Saricifti, MRS Bull. 30, 33 (2005)CrossRefGoogle Scholar
  27. 27.
    K. Takanezawa, K. Hirota, Q.S. Wei, K. Tajima, K. Hashimoto, J. Phys. Chem. C. 111, 7218 (2007)CrossRefGoogle Scholar
  28. 28.
    K.M. Coakley, Y.X. Liu, C. Goh, M.D. McGehee, MRS Bull. 30, 37 (2005)CrossRefGoogle Scholar
  29. 29.
    S.R. Forrest, Nature 428, 911 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    H. Wang, Y. Zheng, L. Zhang, J. Yu, Sol. Energy Mater. Sol. Cells 128, 215 (2014)CrossRefGoogle Scholar
  32. 32.
    I. Hwang, C.R. McNeill, N.C. Greenham, Synth. Met. 189, 63 (2014)CrossRefGoogle Scholar
  33. 33.
    S.K. Jang, S.C. Gong, H.J. Chang, Synth. Met. 162, 426 (2012)CrossRefGoogle Scholar
  34. 34.
    Z. Hu, J. Zhang, S. Xiong, Y. Zhao, Sol. Energy Mater. Sol. Cells 99, 221 (2012)CrossRefGoogle Scholar
  35. 35.
    S.Y. Park, Y.J. Kang, S. Lee, D.G. Kim, J.K. Kim, J.H. Kim, J.W. Kang, Sol. Energy Mater. Sol. Cells 95, 852 (2011)CrossRefGoogle Scholar
  36. 36.
    F. Aziz, A.F. Ismail, M. Aziz, T. Soga, Chem. Eng. Process. Process Intensif. 79, 48 (2014)CrossRefGoogle Scholar
  37. 37.
    P. Kumar, K. Santhakumar, J. Tatsugi, P.K. Shin, S. Ochiai, Jpn. J. Appl. Phys. 53, 1 (2014)Google Scholar
  38. 38.
    J.H. Lee, T. Sagawa, S. Yoshikawa, Org. Electron. 12, 2165 (2011)CrossRefGoogle Scholar
  39. 39.
    J.H. Lee, T. Sagawa, S. Yoshikawa, Thin Solid Films 529, 464 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    K.X. Steirer, M.O. Reese, B.L. Rupert, N. Kopidakis, D.C. Olson, R.T. Collins, D.S. Ginley, Sol. Energy Mater. Sol. Cells 93, 447 (2009)CrossRefGoogle Scholar
  41. 41.
    Y.H. Chang, S.R. Tseng, C.Y. Chen, H.F. Meng, E.C. Chen, S.F. Horng, C.S. Hsu, Org. Electron. 10, 741 (2009)CrossRefGoogle Scholar
  42. 42.
    S.L. Lim, E.C. Chen, C.Y. Chen, K.H. Ong, Z.K. Chen, H.F. Meng, Sol. Energy Mater. Sol. Cells 107, 292 (2012)CrossRefGoogle Scholar
  43. 43.
    C. Yang, E. Zhou, S. Miyanishi, K. Hashimoto, K. Tajima, ACS Appl. Mater. Interfaces 3(10), 4053 (2011)CrossRefGoogle Scholar
  44. 44.
    Y. Sun, Y. Zhang, Q. Liang, Y. Zhang, H. Chi, Y. Shi, D. Fang, RSC. Adv. 3, 11925 (2013)CrossRefGoogle Scholar
  45. 45.
    S.I. Na, D.W. Park, S.S. Kim, S.Y. Yang, K. Lee, M.H. Lee, Semicond. Sci. Technol. 27, 1 (2012)CrossRefGoogle Scholar
  46. 46.
    A. Schneider, N. Traut, M. Hamburger, Sol. Energy Mater. Sol. Cells 126, 149 (2014)CrossRefGoogle Scholar
  47. 47.
    S.E. Shaheen, R. Radspinner, N. Peyghambarian, G.E. Jabbour, Appl. Phys. Lett. 79, 2996 (2001)ADSCrossRefGoogle Scholar
  48. 48.
    P.T. Tsai, C.Y. Tsai, C.M. Wang, Y.F. Chang, H.F. Meng, Z.K. Chen, H.W. Lin, H.W. Zan, S.F. Horng, Y.C. Lai, P. Yu, Org. Electron. Phys. Mater. Appl. 15, 893 (2014)Google Scholar
  49. 49.
    M. Ahmadi, D. Rashidi, Indian J. Phys. 15, 819 (2016)Google Scholar
  50. 50.
    S. Salari, M. Ahmadi, K. Mirabbaszadeh, Electron. Mater. Lett. 10(1), 13 (2014)CrossRefGoogle Scholar
  51. 51.
    J.H. Lee, K.H. Ko, B.O. Park, J. Cryst. Growth 247, 119 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    R.A. Asmar, D. Zaouk, P. Bahouth, J. Podlki, A. Foucaran, Microelectron. Eng. 83, 393 (2006)CrossRefGoogle Scholar
  53. 53.
    F.C. Krebs, K. Norrman, Res. Appl. 15, 697 (2007)Google Scholar
  54. 54.
    W. Hyuk Baek, H. Yang, T. Sik Yoon, C.J. Kang, H.H. Lee, Y. Sang Kim, Sol. Energy Sol. Cells 93, 1263 (2009)CrossRefGoogle Scholar
  55. 55.
    F.C. Kerbs, Sol. Energy Mater. Sol. Cells 92, 715 (2008)CrossRefGoogle Scholar
  56. 56.
    M. Lenes, L.J.A. Koster, V.D. Mihailetchi, P.W.M. Blom, Appl. Phys. Lett. 88, 093511 (2006)ADSCrossRefGoogle Scholar
  57. 57.
    B.C. Thompson, J.M.J. Frechet, Polymer-fullerene composite solar cells. Angew. Chem. Int. Ed. 47, 58 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mehdi Ahmadi
    • 1
  • Mohammad Shafiey Dehaj
    • 2
    Email author
  • Somayeh Ghazanfarpour
    • 1
  • Samaneh Ghazanfarpour
    • 1
  1. 1.Department of Physics, Faculty of ScienceVali-e-Asr University of RafsanjanRafsanjanIran
  2. 2.Department of Mechanical Engineering, Faculty of EngineeringVali-e-Asr University of RafsanjanRafsanjanIran

Personalised recommendations