Advertisement

Applied Physics A

, 125:582 | Cite as

Monte Carlo study of the manganite oxide perovskite YMnO3

  • N. El MekkaouiEmail author
  • S. Idrissi
  • S. Mtougui
  • I. El Housni
  • R. Khalladi
  • H. Labrim
  • S. Ziti
  • L. Bahmad
Article
  • 33 Downloads

Abstract

This work deals with the magnetic behavior of the yttrium manganite oxide YMnO3 which can crystallize in either the hexagonal (h-YMO) or orthorhombic (o-YMO) structure. These two structures are investigated using Monte Carlo simulations under the Metropolis algorithm. In a first step, we have elaborated and discussed the ground-state phase diagrams in different planes corresponding to different physical parameters. The study of the ground-state phase diagrams is done in the absence of any temperature fluctuations. Then we examine the critical behavior and the dependency of the magnetizations and the susceptibilities as a function of the temperature, the crystal field, the exchange coupling interactions and the external magnetic field. On the other hand, we have illustrated the behavior of the magnetizations as a function of the exchange coupling interactions to show and underline the magnetic atoms Mn–Mn for fixed values of the other physical parameters. In addition, we have investigated and discussed the effect of varying the exchange coupling interactions on the total magnetizations, for fixed temperature values. To complete this study, we have provided and analyzed the hysteresis cycles of the studied manganite oxide perovskite YMnO3 compound as a function of the external magnetic field, for specific values of the crystal field, the exchange coupling interactions and the temperature.

Notes

References

  1. 1.
    H. Schmid, Ferroelectrics 162, 317 (1994)CrossRefGoogle Scholar
  2. 2.
    V.M. Dubovik, V.V. Tugushev, Phys. Rep. 187, 145 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    S. Gnewuch, E.E. Rodriguez, J. Solid State Chem. 271, 175 (2019)ADSCrossRefGoogle Scholar
  4. 4.
    P. Tolédano, M. Ackermann, L. Bohatý, P. Becker, T. Lorenz, N. Leo, M. Fiebig, Phys. Rev. B Condens. Matter Mater. Phys. 92, 1 (2015)CrossRefGoogle Scholar
  5. 5.
    M. Čebela, D. Zagorac, K. Batalović, J. Radaković, B. Stojadinović, V. Spasojević, R. Hercigonja, Ceram. Int. 43, 1256 (2017)CrossRefGoogle Scholar
  6. 6.
    S. Vasala, M. Karppinen, Prog. Solid State Chem. 43, 1 (2015)CrossRefGoogle Scholar
  7. 7.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    D. Meier, M. Maringer, T. Lottermoser, L. Becker, L. Bohaty, M. Fiebig, Phys. Rev. Lett. 102, 1 (2009)CrossRefGoogle Scholar
  9. 9.
    Y. Tokunaga, N. Furukawa, H. Sakai, Y. Taguchi, T. Arima, Y. Tokura, Nat. Mater. 8, 558 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    S.-C. Haw, S.-A. Lee, K.-T. Lu, F.-C. Chou, N.H. Iraoka, H.I. Shii, K.T. Suei, C.L. Lee, J. Chen, J. Phys. Soc. Jpn 82, 82 (2013)CrossRefGoogle Scholar
  11. 11.
    M.B. Salamon, M. Jaime, Rev. Mod. Phys. 73, 583 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    J. Topfer, J.B. Goodenough, J. Solid State Chem. 130, 117 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    C.N.R. Rao, A.K. Cheetham, R. Mahesh, Chem. Mater. 8, 2421 (1996)CrossRefGoogle Scholar
  14. 14.
    D.M. Edwards, Adv. Phys. 51, 1259 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    I. Maurin, P. Barboux, Y. Lassailly, J. Boilot, J. Solid State Chem. 160, 123 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    J. Fontcuberta, Comptes Rendus Phys. 16, 204 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    A. Gavrikov, P. Koroteev, A. Ilyukhin, N. Efimov, A.K. Kostopoulos, A. Baranchikov, A. Tyurin, D. Kirdyankin, K. Gavrichev, F. Tuna, Z. Dobrokhotova, Polyhedron 122, 184 (2017)CrossRefGoogle Scholar
  18. 18.
    S. Mohammadi, H. Shokrollahi, M.H. Basiri, J. Magn. Magn. Mater. 375, 38 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    B. Rajyaguru, H. Boricha, V.G. Shrimali, A.D. Joshi, K. Asokan, N.A. Shah, P.S. Solanki, Mater. Today Proc. 5, 9927 (2018)CrossRefGoogle Scholar
  20. 20.
    A.M. Sousa, A.F. Lima, M.V.D.S. Rezende, J. Solid State Chem. 269, 312 (2019)ADSCrossRefGoogle Scholar
  21. 21.
    A.A. Belik, J. Solid State Chem. 246, 8 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    H.L. Yakel, Acta Crystallogr. 8, 394 (1955)CrossRefGoogle Scholar
  23. 23.
    H.L. Yakel, W.C. Koehler, E.F. Bertaut, E.F. Forrat, Acta Crystallogr. 16, 957 (1963)CrossRefGoogle Scholar
  24. 24.
    T. Kimura, S. Ishihara, H. Shintani, T. Arima, K.T. Takahashi, K. Ishizaka, Y. Tokura, Phys. Rev. B 68, 1 (2003)CrossRefGoogle Scholar
  25. 25.
    J. Alonso, M.J. Martinez-Lope, M.T. Casais, M.T. Fernandez-Diaz, Inorg. Chem. 39, 917 (2000)CrossRefGoogle Scholar
  26. 26.
    T. Goto, T. Kimura, G. Lawes, A.P. Ramirez, Y. Tokura, Phys. Rev. Lett. 92, 1 (2004)CrossRefGoogle Scholar
  27. 27.
    T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    B. Lorenz, Y.Q. Wang, Y.Y. Sun, C.W. Chu, Phys. Rev. B 70, 1 (2004)CrossRefGoogle Scholar
  29. 29.
    D. Okuyama, S. Ishiwata, Y. Takahashi, K. Yamauchi, S. Picozzi, K. Sugimoto, H. Sakai, M. Takata, R. Shimano, Y. Taguchi, T. Arima, Y. Tokura, Phys. Rev. B 84, 1 (2011)CrossRefGoogle Scholar
  30. 30.
    B.B. Van Aken, A. Meetsma, T.T.M. Palstra, Acta Crystallogr. Sect. C. Struct. Chem. C57, 230 (2001)Google Scholar
  31. 31.
    H.C. Gupta, P. Ashdhir, Phys. B 262, 1 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    A. Waintal, J.J. Capponi, E.F. Bertaut, M. Contré, D. François, Solid State Commun. 4, 125 (1966)ADSCrossRefGoogle Scholar
  33. 33.
    Y.H. Huang, H. Fjellvag, M. Karppinen, B.C. Hauback, H. Yamauchi, J.B. Goodenough, Chem. Mater. 18, 2130 (2006)CrossRefGoogle Scholar
  34. 34.
    W. Prellier, M.P. Singh, P. Murugavel, J. Phys. Condens. Matter 17, R803 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    E.S. Stampler, W.C. Sheets, W. Prellier, T.J. Marks, K.R. Poeppelmeier, J. Mater. Chem. 19, 4375 (2009)CrossRefGoogle Scholar
  36. 36.
    M. Počuča-Nešić, Z. Marinković Stanojević, Z. Branković, P. Cotič, S. Bernik, M.S. Góes, B.A. Marinković, J.A. Varela, G. Branković, J. Alloys Compd. 552, 451 (2013)CrossRefGoogle Scholar
  37. 37.
    S. Quezel, J. Rossat-Mignod, E.F. Bertaut, Solid State Commun. 14, 941 (1974)ADSCrossRefGoogle Scholar
  38. 38.
    H.W. Brinks, H. Fjellvåg, A. Kjekshus, J. Solid State Chem. 129, 334 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    P.A. Salvador, T.-D. Doan, B. Mercey, B. Raveau, Chem. Mater. 10, 2592 (1998)CrossRefGoogle Scholar
  40. 40.
    A. Bosak, A. Kamenev, I.E. Graboy, S.V. Antonov, O.Y. Gorbenko, A.R. Kaul, C. Dubourdieu, J.P. Senateur, V.L. Svechnikov, H.W. Zandbergen, B. Holländer, Thin Solid Films 400, 149 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    S.A. Nikolaev, V.G. Mazurenko, A.N. Rudenko, Solid State Commun. 164, 16 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    G.A. Smolenskii, V.A. Bokov, J. Appl. Phys. 35, 915 (1964)ADSCrossRefGoogle Scholar
  43. 43.
    B.B. Van Aken, T.T.M. Palstra, A. Filippetti, N.A. Spaldin, Nat. Mater. 3, 164 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    K. Lukaszewicz, J. Karut-Kalicinska, Ferroelectrics 7, 81 (1974)CrossRefGoogle Scholar
  45. 45.
    M. Tomczyk, M. Senos, M. Vilarinho, I. Michael, Scr. Mater. 66, 288 (2012)CrossRefGoogle Scholar
  46. 46.
    J. Varignon, S. Petit, L. Marie-Bernadette (2012). https://hal.archives-ouvertes.fr/hal-00677352
  47. 47.
    I. Levin, V. Krayzman, T.A. Vanderah, M. Tomczyk, H. Wu, M.G. Tucker, H.Y. Playford, J.C. Woicik, C.L. Dennis, P.M. Vilarinho, J. Solid State Chem. 246, 29 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V.G. Kostishyn, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, J. Alloys Compd. 689, 383 (2016)CrossRefGoogle Scholar
  49. 49.
    A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, S.H. Jabarov, V.V. Korovushkin, S.V. Trukhanov, E.L. Trukhanova, Ceram. Int. 43, 12822 (2017)CrossRefGoogle Scholar
  50. 50.
    S.V. Trukhanova, A.V. Trukhanova, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, V.A. Turchenko, V.V. Kochervinskii, JETP Lett. 103, 100 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    A.V. Trukhanova, S.V. Trukhanova, V.G. Kostishina, L.V. Paninaa, M.M. Salema, I.S. Kazakevich, V.A. Turchenkoc, V.V. Kochervinskiie, D.A. Krivchenya, Phys. Solid State 59, 737 (2017)ADSCrossRefGoogle Scholar
  52. 52.
    S. Idrissi, L. Bahmad, R. Khalladi, I. El Housni, N. El Mekkaoui, S. Mtougui, H. Labrim, S. Ziti, Chin. J. Phys. 60, 549–563 (2019)CrossRefGoogle Scholar
  53. 53.
    S. Idrissi, R. Khalladi, S. Mtougui, S. Ziti, H. Labrim, I. El Housni, N. El Mekkaoui, L. Bahmad, Phys. A Stat. Mech. Appl. 523, 714 (2019)CrossRefGoogle Scholar
  54. 54.
    R. Khalladi, H. Labrim, S. Idrissi, S. Mtougui, I. El Housni, S. Ziti, N. El Mekkaoui, L. Bahmad, Solid State Commun. 290, 42 (2019)ADSCrossRefGoogle Scholar
  55. 55.
    I. El Housni, H. Labrim, N. El Mekkaoui, S. Idrissi, R. Khalladi, S. Mtougui, S. Ziti, L. Bahmad, Spin 09, 1950002 (2019)CrossRefGoogle Scholar
  56. 56.
    S. Idrissi, H. Labrim, S. Ziti, R. Khalladi, N. El Mekkaoui, I. El Housni, S. Mtougui, L. Bahmad, J. Electron. Mater. (2019) (in press) Google Scholar
  57. 57.
    S. Mtougui, R. Khalladi, N. El Mekkaoui, I. El Housni, S. Idrissi, L. Bahmad, S. Ziti, H. Labrim, Comput. Condens. Matter 16, 1 (2018)Google Scholar
  58. 58.
    S. Idrissi, S. Ziti, H. Labrim, R. Khalladi, S. Mtougui, N. El Mekkaoui, I. El Housni, L. Bahmad, Phys. A Stat. Mech. Appl. 527, 121406 (2019)CrossRefGoogle Scholar
  59. 59.
    S. Idrissi, R. Khalladi, S. Ziti, N. El Mekkaoui, S. Mtougui, H. Labrim, I. El Housni, L. Bahmad, Phys. B Condens. Matter 562, 116 (2019)ADSCrossRefGoogle Scholar
  60. 60.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)ADSCrossRefGoogle Scholar
  61. 61.
    E. Ising, Zeitschrift Für Phys. 31, 253 (1925)ADSCrossRefGoogle Scholar
  62. 62.
    K. Uusi-esko, J. Malm, N. Imamura, H. Yamauchi, M. Karppinen, Mater. Chem. Phys. 112, 1029 (2008)CrossRefGoogle Scholar
  63. 63.
    K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)CrossRefGoogle Scholar
  64. 64.
    S.V. Trukhanov, I.O. Troyanchuk, I.M. Fita, H. Szymczak, K. Bärner, J. Magn. Magn. Mater. 237, 276 (2001)ADSCrossRefGoogle Scholar
  65. 65.
    S.V. Trukhanov, I.O. Troyanchuk, A.V. Trukhanov, I.M. Fita, A.N. Vasil’ev, A. Maignan, H. Szymczak, JETP Lett. 83, 33 (2006)CrossRefGoogle Scholar
  66. 66.
    S.V. Trukhanova, A.V. Trukhanova, A.N. Vasiliev, H. Szymczak, J. Exp. Theor. Phys. 111, 209 (2010)ADSCrossRefGoogle Scholar
  67. 67.
    S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, A.M. Balagurov, H. Szymczak, J. Exp. Theor. Phys. 113, 819 (2011)ADSCrossRefGoogle Scholar
  68. 68.
    S.V. Trukhanov, A.V. Trukhanov, C.E. Botez, A.H. Adair, H. Szymczak, R. Szymczak, J. Phys. Condens. Matter 19, 266214 (2007)ADSCrossRefGoogle Scholar
  69. 69.
    V. D. Doroshev, V. A. Borodin, V. I. Kamenev, A. S. Mazur, T. N. Tarasenko, A. I. Tovstolytkin, and S. V. Trukhanov, J. Appl. Phys. 104, 0 (2008)Google Scholar
  70. 70.
    S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.V. Fedotova, I.O. Troyanchuk, A.V. Trukhanov, V.A. Ryzhov, H. Szymczak, R. Szymczak, M. Baran, J. Phys.: Condens. Matter 17, 6495 (2005)ADSGoogle Scholar
  71. 71.
    S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, R. Szymczak, M. Baran, J. Phys. Chem. Solids 67, 675 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de la Matière Condensée et des Sciences Interdisciplinaires (LaMCScI), Faculty of SciencesMohammed V UniversityRabatMorocco
  2. 2.USM/DERS/Centre National de l’Energie, des Sciences et des Techniques Nucléaires (CNESTEN)RabatMorocco
  3. 3.Intelligent Processing and Security of Systems, Faculty of SciencesMohammed V University in RabatRabatMorocco

Personalised recommendations