Advertisement

Applied Physics A

, 125:593 | Cite as

Method of assembling pure Langmuir–Blodgett DNA films using TBE buffer as the subphase

  • Souhad M. A. Daraghma
  • Sara Talebi
  • Chan Zhijian
  • Vengadesh PeriasamyEmail author
Article
  • 25 Downloads

Abstract

The advantage of using Langmuir–Blodgett (LB) method in assembling thin films refers mainly to the effective deposition of mono- and multilayer films with an organized, well-defined molecular orientation and ordered layer structure. Deoxyribonucleic acid (DNA), in recent times, has also been deposited using LB technique to form films on solid substrates for various studies. However, it has been quite a challenge for researchers to obtain pure homogenous DNA film due to the hydrophilic nature of DNA that makes it unable to float on water subphase. In this work, an unconventional approach was employed by suspending synthetic DNA molecules on a subphase of Tris base, Boric acid with ethylenediamine tetra acetic acid (EDTA) (TBE) buffer instead of deionized water. Spectroscopic, morphological, and electrical characterisations were then carried out for further understanding of the resulting DNA film on solid substrates. The obtained results confirmed DNA layer functionality with uniform film formation, which demonstrated a strong rectification when electrical studies were conducted. For this purpose, we employed the LB-derived pure DNA films integrated within a metal–semiconductor or Schottky junction, confirming previous reports on semiconductor-like behaviour of DNA molecules. We believe, the possibility of obtaining pure DNA film using the LB method may allow in-depth investigations pertaining to DNA interaction with various other macromolecules besides exciting applications in various electronic devices, especially in the field of biosensors.

Notes

Acknowledgements

The authors would like to acknowledge financial support from FRGS (FP038-2017A) grant.

References

  1. 1.
    A. Samanta, I.L. Medintz, Nanoparticles and DNA–a powerful and growing functional combination in bionanotechnology. Nanoscale 8(17), 9037–9095 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    B. Gnapareddy, S.R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, S.H. Park, Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films. Sci. Rep. 5, 12722 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    C. Nicolini, V. Erokhin, P. Facci, S. Guerzoni, A. Ross, P. Paschkevitsch, Quartz balance DNA sensor. Biosens. Bioelectron. 12(7), 613–618 (1997)CrossRefGoogle Scholar
  4. 4.
    S. Dai, X. Zhang, Z. Du, H. Dang, Fabrication of nanopatterned DNA films by Langmuir–Blodgett technique. Mater. Lett. 59(4), 423–429 (2005)CrossRefGoogle Scholar
  5. 5.
    S. Schouten, P. Stroeve, M.L. Longo, DNA adsorption and cationic bilayer deposition on self-assembled monolayers. Langmuir 15(23), 8133–8139 (1999)CrossRefGoogle Scholar
  6. 6.
    K. Sarveswaran, B. Gao, K.N. Kim, G.H. Bernstein, M. Lieberman, Adhesion of DNA nanostructures and DNA origami to lithographically patterned self-assembled monolayers on Si [100]. Alternat. Lithograph. Technol. II 7637, 76370 (2010)CrossRefGoogle Scholar
  7. 7.
    A. Takagi, K. Ojima, E. Mikamo, T. Matsumoto, T. Kawai, Anchoring gold nanoparticles onto a mica surface by oxygen plasma ashing for sequential nanocomponent assembly. Appl. Phys. Lett. 90(4), 043122 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    E. Huang, F. Zhou, L. Deng, Studies of surface coverage and orientation of DNA molecules immobilized onto preformed alkanethiol self-assembled monolayers. Langmuir 16(7), 3272–3280 (2000)CrossRefGoogle Scholar
  9. 9.
    V. Ramakrishnan, M. D'Costa, K.N. Ganesh, M. Sastry, PNA–DNA hybridization at the air–water interface in the presence of octadecylamine Langmuir monolayers. Langmuir 18(16), 6307–6311 (2002)CrossRefGoogle Scholar
  10. 10.
    O.N. Oliveira Jr., Langmuir-Blodgett films-properties and possible applications. Br. J. Phys. 22(2), 60–69 (1992)Google Scholar
  11. 11.
    S.A. Hussain, Langmuir–Blodgett films a unique tool for molecular electronics. arXiv:0908.1814 (2009)Google Scholar
  12. 12.
    O. Sínanoĝlu, S. Abdulnur, Hydrophobic stacking of bases and the solvent denaturation of DNA. Photochem. Photobiol. 3(4), 333–342 (1964)CrossRefGoogle Scholar
  13. 13.
    Z. Matharu, B.D. Malhotra, Polyaniline Langmuir–Blodgett film based aptasensor for ochratoxin A detection. Biosens. Bioelectron. 26(10), 4006–4011 (2011)CrossRefGoogle Scholar
  14. 14.
    Y. Okahata, T. Kobayashi, K. Tanaka, Orientation of DNA double strands in a Langmuir–Blodgett film. Langmuir 12(5), 1326–1330 (1996)CrossRefGoogle Scholar
  15. 15.
    A. Bhaumik, M. Ramakanth, L.K. Brar, A.K. Raychaudhuri, F. Rondelez, D. Chatterji, Formation of a DNA layer on Langmuir–Blodgett films and its enzymatic digestion. Langmuir 20(14), 5891–5896 (2004)CrossRefGoogle Scholar
  16. 16.
    S. Andan, S.I. Hariharan, G.G. Chase, Continuum model evaluation of the effect of saturation on coalescence filtration. Sep. Sci. Technol. 43(8), 1955–1973 (2008)CrossRefGoogle Scholar
  17. 17.
    B.R. Malcolm, Aspects of Langmuir trough design in relation to the study of molecular monolayers of polymers and condensed films. Thin Solid Films 178(1–2), 17–25 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    Ö. Güllü, M. Cankaya, Ö. Barış, M. Biber, H. Özdemir, M. Güllüce, A. Türüt, DNA-based organic-on-inorganic semiconductor Schottky structures. Appl. Surf. Sci. 254(16), 5175–5180 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Ö. Güllü, A. Türüt, Electronic parameters of MIS Schottky diodes with DNA biopolymer interlayer. Mater. Sci. Poland 33(3), 593–600 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    H.M.J. Al-Ta’ii, V. Periasamy, Y.M. Amin, Electronic characterization of Au/DNA/ITO metal-semiconductor-metal diode and its application as a radiation sensor. PLoS ONE 11(1), e0145423 (2016)CrossRefGoogle Scholar
  21. 21.
    J.G. Grote, Photoelectrical effect and current–voltage characteristics in DNA-metal Schottky barriers. Org. Photon. Mater. Dev. IX 6470, 64700 (2007)Google Scholar
  22. 22.
    A.V. Tataurov, Y. You, R. Owczarzy, Predicting ultraviolet spectrum of single stranded and double stranded deoxyribonucleic acids. Biophys. Chem. 133(1–3), 66–70 (2008)CrossRefGoogle Scholar
  23. 23.
    H.M.J. Al-Ta’ii, Y.M. Amin, V. Periasamy, Humidity influenced capacitance and resistance of an Al/DNA/Al Schottky diode irradiated by alpha particles. Sci. Rep. 6, 25519 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    V. Periasamy, N. Rizan, H.M.J. Al-Ta’ii, Y.S. Tan, H.A. Tajuddin, M. Iwamoto, Measuring the electronic properties of DNA-specific Schottky diodes towards detecting and identifying basidiomycetes DNA. Sci. Rep. 6, 29879 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    N. Rizan, C.Y. Yew, M.R. Niknam, J. Krishnasamy, S. Bhassu, G.Z. Hong, S.M. Phang, Electronic properties of synthetic shrimp pathogens-derived DNA schottky diodes. Sci. Rep. 8(1), 896 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    M. Sağlam, A. Ateş, M.A. Yıldırım, B. Güzeldir, A. Astam, Temperature dependent current–voltage characteristics of the Cd/CdO/n–Si/Au–Sb structure. Curr. Appl. Phys. 10(2), 513–520 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    S. Gholami, M. Khakbaz, Measurement of IV characteristics of a PtSi/p-Si Schottky barrier diode at low temperatures. Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 5(9), 1285–1288 (2011)Google Scholar
  28. 28.
    M. Tahir, M. H. Sayyad, M. Shahid, J. A. Chaudry, A. Munawar, Fabrication of Al/N-BuHHPDI/ITO Schottky barrier diode and investigation of its electrical properties. In: International Conference on Advances in Electrical and Electronics Engineering (ICAEEE'2012), 4 (2012)Google Scholar
  29. 29.
    H.M.J. Al-Ta'ii, Y.M. Amin, V. Periasamy, Investigations of electrical properties of structures Al-DNA-ITO-Al exposed to alpha particles. Radiat. Meas. 72, 85–94 (2015)CrossRefGoogle Scholar
  30. 30.
    N. Tuğluoğlu, S. Karadeniz, Analysis of current–voltage and capacitance–voltage characteristics of perylene-monoimide/n-Si Schottky contacts. Curr. Appl. Phys. 12(6), 1529–1535 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    P. Chattopadhyay, The effect of shunt resistance on the electrical characteristics of Schottky barrier diodes. J. Phys. D Appl. Phys. 29(3), 823 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current–voltage characteristics. Appl. Phys. Lett. 49(2), 85–87 (1986)ADSCrossRefGoogle Scholar
  33. 33.
    G. Güler, Ö. Güllü, Ş. Karataş, Ö.F. Bakkaloğlu, Analysis of the series resistance and interface state densities in metal semiconductor structures. J. Phys. Conf. Ser. 153(1), 012054 (2009)CrossRefGoogle Scholar
  34. 34.
    M. Eslamian, Inorganic and organic solution-processed thin film devices. Nano-micro Lett 9(1), 3 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Science, Low Dimensional Materials Research Centre (LDMRC)University of MalayaKuala LumpurMalaysia

Personalised recommendations