Applied Physics A

, 125:608 | Cite as

Phase structure, Raman spectroscopic, microstructure and dielectric properties of (K0.5Na0.5)NbO3–Bi(Li0.5Nb0.5)O3 lead-free ceramics

  • Junpeng Shi
  • Yujing Yu
  • Xiuli ChenEmail author
  • Gaofeng Liu
  • Xinyu Jiang
  • Jinling Liang
  • Jiajie Ling
  • Mingzhao Xu
  • Huanfu Zhou


(1-x)(K0.5Na0.5)NbO3xBi(Li0.5Nb0.5)O3 [(1-x)KNN–xBLN, 0 ≤ x ≤ 0.02] dielectric ceramics were synthesized by an ordinary sintering technique. The effects of Bi(Li0.5Nb0.5)O3 addition on the phase structure, microstructure and dielectric properties of KNN ceramics were studied. The phase structure of ceramics shifted from the orthorhombic to pseudo-cubic phase structure with increasing the content of Bi(Li0.5Nb0.5)O3. The addition of Bi(Li0.5Nb0.5)O3 depressed the transition temperature of the orthogonal and tetragonal phases, which is a benefit to the thermal stability of KNN ceramics. Especially, as x = 0.01, the ceramics have a high relative permittivity εr (~ 1557), low dielectric loss tanδ (< 2.4%) and good thermal stability Δε/ε150°C (≤  ± 10%) from 150 °C to 365 °C. Especially, when x = 0.005, the piezoelectric constant d33 was improved to 133 pC/N. Furthermore, the comprehensive properties of (1-x)KNN–xBLN (0 ≤ x ≤ 0.02) ceramics were enhanced significantly to those of pure KNN ceramics. These results indicate that these ceramics could be considered as the prominent promising candidates for high-temperature capacitor application.



This work was supported by the Natural Science Foundation of China (Nos. 11664008 and 61761015), Natural Science Foundation of Guangxi (Nos. 2018GXNSFFA050001, 2017GXNSFDA198027, and 2017GXNSFFA198011).

Supplementary material

339_2019_2860_MOESM1_ESM.doc (25 kb)
Supplementary file1 (DOC 25 kb)


  1. 1.
    K. Zhang, Y. Guo, D. Pan, H. Duan, Y. Chen, H. Li, H. Liu, Phase transition and piezoelectric properties of dense (K0.48,Na0.52)0.95Li0.05SbxNb(1− x )O3–0.03Ca0.5(Bi0.5, Na0.5)0.5ZrO3 lead free ceramics. J. Alloy. Compd. 664, 503–509 (2016)CrossRefGoogle Scholar
  2. 2.
    J.B. Lim, S. Zhang, N. Kim, T.R. Shrout, High-temperature dielectrics in the BiScO3-BaTiO3-(K1/2Bi1/2)TiO3 ternary system. J. Am. Ceram. Soc. 92, 679–682 (2009)CrossRefGoogle Scholar
  3. 3.
    V.N. Reddy, M.S.P. Reddy, K.R. Gunasekhar, J.H. Lee, Temperature-dependent electrical characteristics and carrier transport mechanism of p-Cu2ZnSnS4/n-GaN heterojunctions. Appl. Phys. A. 124, 4 (2018)Google Scholar
  4. 4.
    X.X. Li, X.L. Chen, X. Yan, H.F. Zhou, X.B. Liu, Excellent thermal stability and low dielectric loss of (Ba1-xBi0.5xSr0.5x)(Ti1-xBi0.5xZr0.5x)O3 solid solution ceramics in a broad temperature range applied in X8R. Appl. Phys. A. 124, 11 (2018)ADSGoogle Scholar
  5. 5.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    X. Pang, J. Qiu, K. Zhu, J. Du, (K, Na)NbO3-based lead-free piezoelectric ceramics manufactured by two-step sintering. Ceram. Int. 38, 2521–2527 (2012)CrossRefGoogle Scholar
  7. 7.
    M.D. Maeder, D. Damjanovic, N. Setter, Lead free piezoelectric materials. J. Electroceram. 13, 385–392 (2004)CrossRefGoogle Scholar
  8. 8.
    E. Cross, Lead-free at last. Nature 432, 24–25 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    J.G. Wu, D.X. Xiao, Y.Y. Wang, Phase structure, microstructure and ferroelectric properties of (1-x)[(K0.50Na0.50)0.94Li0.06](Nb0.94Sb0.06)O3-xCaTiO3 lead-free ceramics. J. Alloys. Compd. 476, 782–786 (2009)CrossRefGoogle Scholar
  10. 10.
    X. Lv, J.G. Wu, Effects of a phase engineering strategy on the strain properties in KNN-based ceramics. J. Mater. Chem. C. 7, 2037–2048 (2019)CrossRefGoogle Scholar
  11. 11.
    W.B. Li, D. Zhou, R. Xu, L.X. Pang, I.M. Reaney, BaTiO3−Bi(Li0.5Ta0.5)O3, lead-free ceramics, and multilayers with high energy storage density and efficiency. ACS. Appl. Energy. Mater. 1, 5016–5023 (2018)CrossRefGoogle Scholar
  12. 12.
    W.B. Li, D. Zhou, L.X. Pang, R. Xua, H.H. Guo, Novel barium titanate based capacitors with high energy density and fast discharge performance. J. Mater. Chen. A. 5, 19607–19612 (2017)CrossRefGoogle Scholar
  13. 13.
    G.S. Xu, Z.Q. Duan, X.F. Wang, Growth and some electrical properties of lead-free piezoelectric crystals (Na1/2Bi1/2)TiO3 and (Na1/2Bi1/2)TiO3-BaTiO3 prepared by a bridgman method. J. Cryst. Growth. 275, 113–119 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Y.F. Qu, D. Shan, J.J. Song, Effect of A-site substitution crystal component and dielectric properties in Bi0.5Na0.5TiO3 ceramics. Mater. Sci. Eng. B. 121, 148–151 (2005)CrossRefGoogle Scholar
  15. 15.
    Y. Guo, K.I. Kakimoto, H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121–4123 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, S.I. Hirano, Processing and piezoelectric properties of lead-free (K, Na)(Nb, Ta)O3 ceramics. J. Am. Ceram. Soc. 88, 1190–1196 (2005)CrossRefGoogle Scholar
  17. 17.
    E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Piezoelectric properties of Li- and Ta-modified (Na0.5K0.5)NbO3 ceramics. Appl. Phys. Lett. 87, 182905 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    C.W. Ahn, E.D. Jeong, S.Y. Lee, H.J. Lee, S.H. Kang, I.W. Kim, Enhanced ferroelectric properties of LiNbO3 substituted Na0.5K0.5NbO3 lead-free thin films grown by chemical solution deposition. Appl. Phys. Lett. 93, 212905 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    M. Kosec, V. Bobnar, M. Hrovat, J. Bernard, B. Malic, J. Holc, New lead-free relaxors based on the K0.5Na0.5NbO3-SrTiO3 solid solution. J. Mater. Res. 19, 1849–1854 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    L.Y. Li, W.F. Bai, Y. Zhang, B. Shen, J.W. Zhai, The preparation and piezoelectric property of textured KNN-based ceramics with plate-like NaNbO3 powders as template. J. Alloys. Compd. 622, 137–142 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Du, J.F. Wang, G.Z. Zang, X.J. Yi, Phase transition behavior and piezoelectric properties of low-Li and high-Sb modified KNN based piezoceramics. Phys B 406, 4077–4079 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    L.Y. Wang, W. Ren, P. Shi, X.Q. Wu, Cobalt doping effects on structures and electrical properties of lead-free ferroelectric K0.5Na0.5NbO3 films. J.Alloys. Compd. 608, 202–206 (2014)CrossRefGoogle Scholar
  23. 23.
    X. Yan, W. Ren, X.Q. Wu, P. Shi, X. Yao, Lead-free (K, Na)NbO3 ferroelectric thin films: preparation, structure and electrical properties. J. Alloys. Compd. 508, 129–132 (2010)CrossRefGoogle Scholar
  24. 24.
    J. Wang, S.L. Jiang, D. Jiang, J.J. Tian, Y.L. Li, Y. Wang, Microstructural design of BaTiO3-based ceramics for temperature-stable multilayer ceramic capacitors. Ceram. Int. 38, 5853–5857 (2012)CrossRefGoogle Scholar
  25. 25.
    D. Lin, K.W. Kwok, L.H.W. Chan, Structure, piezoelectric and ferroelectric properties of Li- and Sb-modified K0.5Na0.5NbO3 lead-free ceramics. J. Appl. Phys. 102, 074113 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    W.F. Liang, W.J. Wu, D.Q. Xiao, J.G. Zhu, Effect of the Addition of CaZrO3 and LiNbO3 on the Phase Transitions and Piezoelectric Properties of K0.5Na0.5NbO3 Lead-Free Ceramics. J. Am. Ceram. Soc. 94, 4317–4322 (2011)CrossRefGoogle Scholar
  27. 27.
    K. Wang, J.F. Li, Domain engineering of lead-free li-modified (K, Na)NbO3 polycrystals with highly enhanced piezoelectricity. Adv. Funct. Mater. 20, 1924–1929 (2010)CrossRefGoogle Scholar
  28. 28.
    L.J. Liu, Y.M. Huang, C.X. Su, L. Fang, M.X. Wu, C.Z. Hu, H.Q. Fan, Space-charge relaxation and electrical conduction in K0.5Na0.5NbO3 at high temperatures. Appl. Phys. A. 104, 1047–1051 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    J. Fuentes, J. Portelles, M.D. Durruthy-Rodriguez, H. H'Mok, M.P. Cruz, Dielectric and piezoelectric properties of the KNN ceramic compound doped with Li, La and Ta. Appl. Phys. A. 118, 709–715 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    X.L. Chen, J. Chen, D.D. Ma, G.S. Huang, L. Fang, H.F. Zhou, High relative permittivity, low dielectric loss and good thermal stability of novel (K0.5Na0.5)NbO3-Bi(Zn0.75W0.25)O3 solid solution. Mater Lett 145(2015), 247–249 (2015)CrossRefGoogle Scholar
  31. 31.
    R. Pantou, C. Dubourdieu, F. Weiss, J. Kreisel, G. Kobernik, W. Haessler, Effect of substitution of Ti by Zr in BaTiO3 thin films grown by MOCVD. Mat. Sci. Semicon. Proc. 5, 237–241 (2003)CrossRefGoogle Scholar
  32. 32.
    F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, G. Isella, H. von Ka¨nel, E. Wintersberger, J. Stangl, G. Bauer, Raman spectroscopy determination of composition and strain in Si1-xGex/Si heterostructures. Mat. Sci. Semicon. Proc. 11, 279–284 (2008)CrossRefGoogle Scholar
  33. 33.
    H.L. Cheng, H.L. Du, W.C. Zhou, D.M. Zhu, F. Luo, B.X. Xu, Bi(Zn2/3Nb1/3)O3-(K0.5Na0.5)NbO3 high-temperature lead-free ferroelectric ceramics with low capacitance variation in a broad temperature usage range. J. Am. Ceram. Soc. 96, 833–837 (2013)CrossRefGoogle Scholar
  34. 34.
    T.X. Yan, F.F. Han, S.K. Ren, X. Ma, L. Fang, L.J. Liu, X.J. Kuang, Dielectric properties of (K0.5Na0.5)NbO3-(Bi0.5Li0.5)ZrO3 lead-free ceramics as high-temperature ceramic capacitors. Appl. Phys. A. 124, 338 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Shi, Z.G. Jin, Z.J. Cheng, X.Z. Wei, T.X. Xu, Effect of SrO or SnO2 addition on the dielectric properties of Ba4.5(Nd0.84Bi0.16)Ti18O54 microwave ceramics. J. Chin. Ceram. Soc. 31, 571–574 (2003)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Junpeng Shi
    • 1
  • Yujing Yu
    • 1
  • Xiuli Chen
    • 1
    Email author
  • Gaofeng Liu
    • 1
  • Xinyu Jiang
    • 1
  • Jinling Liang
    • 1
  • Jiajie Ling
    • 1
  • Mingzhao Xu
    • 1
  • Huanfu Zhou
    • 1
  1. 1.Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Key laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, School of Materials Science and EngineeringGuilin University of TechnologyGuilinChina

Personalised recommendations