Applied Physics A

, 125:595 | Cite as

Noticeable size dispersity and optical stability of sodium dodecyl sulphate (SDS)-coated MnSe quantum dots in extreme natural environment

  • Amrita Deka
  • D. MohantaEmail author


The pH of the dispersing media has an influential role on the optical and radiative features of quantum particles/dots (QDs). Herein, we report size dispersity and luminescence response of sodium dodecyl sulphate (SDS)-coated MnSe QDs dispersed in extreme natural extracts. The hydrothermally processed QDs exhibited wutzite phase and numerous Raman active modes as revealed through the X-ray diffraction and Raman spectroscopy studies; respectively. Of varied pH (typically, from 2.5 to 9), distinctly different extracts were derived from starfruit, sugarcane, chilli, and neem leaves available locally. The hydrodynamic size of the QDs experiences a declining trend with increasing pH, with dispersing media being a buffer solution or a natural extract. Zeta potential makes a clear transition from the positive to the negative values, as one moves from a low (acidic) to high (basic) pH of the natural extracts, and subsequently, the isoelectric point (IEP) of the QDs in a medium has been predicted at pH 6.3. Whereas a more acidic medium offered a relatively lowered luminescence profile, the extracts of high pH ensured an intense blue–violet emission of the QDs located at ~ 428 nm along with defect-mediated peaks, expected at relatively higher wavelengths. Furthermore, the acidic environment tends to suppress both near band edge and defect-mediated emissions substantially. The optical stability of surfactant-coated QDs would find immense value in the areas of nano-bio interface applications, such as nano-bioconjugation, bio-imaging, and drug formulation in nano-medicine.



The authors thank Prof. S. K. Dolui, Mr. K. Mohan, and Ms. A. Bora of the Department of Chemical Sciences, TU for extending DLS measurements along with their suggestive measures and assistance. One of the authors (AD) acknowledges Ms. S. Baidya of the Department of Environmental Science, TU for providing conductivity data in regular intervals.

Supplementary material

339_2019_2859_MOESM1_ESM.tif (517 kb)
Supplementary material 1 (TIFF 517 kb)


  1. 1.
    L. Qi, X. Gao, Emerging application of quantum dots for drug delivery and therapy. Expert Opin. Drug Deliv. 5(3), 263–267 (2008)CrossRefGoogle Scholar
  2. 2.
    W. J. Parak, T. Pellegrino, C. Plank, Labelling of cells with quantum dots. Nanotechnology 16(2), R9 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    J.U. Menon, P. Jadeja, P. Tambe, K. Vu, B. Yuan, K.T. Nguyen, Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics 3(3), 152 (2013)CrossRefGoogle Scholar
  4. 4.
    X. Xue, F. Wang, X. Liu, Emerging functional nanomaterials for therapeutics. J. Mater. Chem. 21(35), 13107 (2011)CrossRefGoogle Scholar
  5. 5.
    M. Bouroushian, Electrochemistry of the chalcogens, In Electrochemistry of Metal Chalcogenides, ed. by F. Scholz (Springer, Berlin, 2010), pp. 57–75Google Scholar
  6. 6.
    R. Lindsay, Magnetic susceptibility of manganese selenide. Phys. Rev. 84(3), 569 (1951)ADSCrossRefGoogle Scholar
  7. 7.
    X. Yang, Y. Wang, Y. Sui, X. Huang, T. Cui, C. Wang, B. Liu, G. Zou, B. Zou, Morphology-controlled synthesis of anisotropic wurtzite MnSe nanocrystals: optical and magnetic properties. Cryst. Eng. Commun. 14(20), 6916–6920 (2012)CrossRefGoogle Scholar
  8. 8.
    V. Kulvietis, G. Streckytė, R. Rotomskis, Spectroscopic investigations of CdTe quantum dot stability in different aqueous media. Lithun. J. Phys. 51(2), 163–171 (2011)CrossRefGoogle Scholar
  9. 9.
    V. Karabanovas, E. Zakarevicius, A. Sukackaite, G. Streckyte, R. Rotomskis, Examination of the stability of hydrophobic (CdSe) ZnS quantum dots in the digestive tract of rats. Photochem. Photobiol. Sci. 7(6), 725–729 (2008)CrossRefGoogle Scholar
  10. 10.
    R.S.H. Yang, L.W. Chang, J.P. Wu, M.H. Tsai, H.J. Wang, Y.C. Kuo, T.K. Yeh, C.S. Yang, P. Lin, Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ. Health Perspect. 115(9), 1339 (2007)CrossRefGoogle Scholar
  11. 11.
    J. Lovrić, H.S. Bazzi, Y. Cuie, G.R.A. Fortin, F.M. Winnik, D. Maysinger, Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J. Mol. Med. 83(5), 377–385 (2005)CrossRefGoogle Scholar
  12. 12.
    W. Jiang, S. Mardyani, H. Fischer, W.C.W. Chan, Design and characterization of lysine cross-linked mercapto-acid biocompatible quantum dots. Chem. Mater. 18(4), 872–878 (2006)CrossRefGoogle Scholar
  13. 13.
    K. Boldt, O.T. Bruns, N. Gaponik, A. Eychmüller, Comparative examination of the stability of semiconductor quantum dots in various biochemical buffers. J. Phys. Chem. B 110(5), 1959–1963 (2006)CrossRefGoogle Scholar
  14. 14.
    J.P. Deng, C. Wu, C.H. Yang, C.Y. Mou, Pyrene-assisted synthesis of size-controlled gold nanoparticles in sodium dodecyl sulfate micelles. Langmuir 21(19), 8947–8951 (2005)CrossRefGoogle Scholar
  15. 15.
    M.A. Alzohairy, Therapeutics role of Azadirachta indica (Neem) and their active constituents in diseases prevention and treatment. Evid. Based Complement. Altern. Med. 2016, Article ID 7382506 (2016). CrossRefGoogle Scholar
  16. 16.
  17. 17.
  18. 18.
    V. Fattori, M.S.N. Hohmann, A.C. Rossaneis, F.A. Pinho-Ribeiro, W.A. Verri, Capsaicin: current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules 21(7), 844 (2016)CrossRefGoogle Scholar
  19. 19.
    A. Dray, Mechanism of action of capsaicin-like molecules on sensory neurons. Life Sci. 51(23), 1759–1765 (1992)CrossRefGoogle Scholar
  20. 20.
    N. Kozukue, J.S. Han, E. Kozukue, S.J. Lee, J.A. Kim, K.R. Lee, C.E. Levin, M. Friedman, Analysis of eight capsaicinoids in peppers and pepper-containing foods by high-performance liquid chromatography and liquid chromatography–mass spectrometry. J. Agric. Food Chem. 53(23), 9172–9181 (2005)CrossRefGoogle Scholar
  21. 21.
    D.M. Updegraff, Semimicro determination of cellulose inbiological materials. Anal. Biochem. 32(3), 420–424 (1969)CrossRefGoogle Scholar
  22. 22.
    J. Karthikeyan, S.S. Samipillai, Sugarcane in therapeutics. J. Herb. Med. Toxicol. 4(1), 9–14 (2010)Google Scholar
  23. 23.
    S.J. Padayatty, A. Katz, Y. Wang, P. Eck, O. Kwon, J.H. Lee, S. Chen, C. Corpe, A. Dutta, S.K. Dutta, M. Levine, Vitamin C as an antioxidant: evaluation of its role in disease prevention. J. Am. Coll. Nutr. 22(1), 18–35 (2003)CrossRefGoogle Scholar
  24. 24.
    R. Sarma, Q. Das, A. Hussain, A. Ramteke, A. Choudhury, D. Mohanta, Physical and biophysical assessment of highly fluorescent, magnetic quantum dots of a wurtzite-phase manganese selenide system. Nanotechnology 25(27), 275101 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    N. Moloto, M.J. Moloto, M. Kalenga, S. Govindraju, M. Airo, Synthesis and characterization of MnS and MnSe nanoparticles: morphology, optical and magnetic properties. Opt. Mater. 36(1), 31–35 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    I.T. Sines, R. Misra, P. Schiffer, R.E. Schaak, Colloidal synthesis of non-equilibrium wurtzite-type MnSe. Angew. Chem. Inter. Ed. 49(27), 4638–4640 (2010)CrossRefGoogle Scholar
  27. 27.
    R.W.G. Wyckoff, Rock salt Structure. Crystal Structures, vol. 1 (Interscience Publishers, New York, 1963), pp. 85–237Google Scholar
  28. 28.
    Z.V. Popović, A. Milutinović, Far-infrared reflectivity and Raman scattering study of α-Mn Se. Phys. Rev. B 73(15), 155203 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    P.D. Lao, Y. Guo, G.G. Siu, S.C. Shen, Optical-phonon behavior in Zn1 xMnxSe: zinc-blende and wurtzite structures. Phys. Rev. B 48(16), 11701 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    A. Milutinović, Z.V. Popović, N. Tomić, S.D. Dević, Raman spectroscopy of polycrystalline α-MnSe, in Materials Science Forum, vol. 453, eds. by D.P. Uskokovic, S.K. Milonjic, D.I. Rakovic (Trans Tech Publications, 2004), pp. 299–304Google Scholar
  31. 31.
    T. Pandiyarajan, B. Karthikeyan, Birth of room-temperature magnons and Raman line enhancement in ZnO nanostructures containing cobalt oxide. J. Raman Spectrosc. 44(11), 1534–1539 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    R. Cuscó, E. Alarcón-Lladó, J. Ibanez, L. Artús, J. Jimenez, B. Wang, M.J. Callahan, Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 75(16), 165202 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    S.K. Tripathy, M. Christy, N.H. Park, E.K. Suh, S. Anand, Y.T. Yu, Hydrothermal synthesis of single-crystalline nanocubes of Co3O4. Mater. Lett. 62(6–7), 1006–1009 (2008)CrossRefGoogle Scholar
  34. 34.
    R. Sarma, D. Mohanta, Luminescence and bio-imaging response of thio-glycolic acid (TGA) and sodium dodecyl sulfate (SDS)-coated fluorescent cadmium selenide quantum dots. J. Lumin. 161, 395–402 (2015)CrossRefGoogle Scholar
  35. 35.
    D.L. Liao, G.S. Wu, B.Q. Liao, Zeta potential of shape-controlled TiO2 nanoparticles with surfactants. Coll. Surf. A Physicochem. Eng. Asp. 348(1–3), 270–275 (2009)CrossRefGoogle Scholar
  36. 36.
    V.B. Kumar, D. Mohanta, Probing spin-spin and spin-lattice relaxation through electron paramagnetic resonance study of nanoscale WO3-x system. Mater. Express 2(1), 57–62 (2012)CrossRefGoogle Scholar
  37. 37.
    S. Patil, A. Sandberg, E. Heckert, W. Self, S. Seal, Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28(31), 4600–4607 (2007)CrossRefGoogle Scholar
  38. 38.
    Q.-Y. Luo, Y. Lin, J. Peng, S.-L. Liu, Z.-L. Zhang, Z.-Q. Tian, D.-W. Pang, Evaluations of non-specific interactions between QDs and proteins. Phys. Chem. Chem. Phys. 16, 7677–7680 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nanoscience and Soft Matter Laboratory, Department of PhysicsTezpur UniversityTezpurIndia

Personalised recommendations