Advertisement

Applied Physics A

, 125:607 | Cite as

Hygrothermal free vibration of multiple magneto-electro-elastic nanoplate system via higher-order nonlocal strain gradient theory

  • E. JafariEmail author
  • M. Fakoor
  • E. Karvand
Article
  • 48 Downloads

Abstract

The free vibration behavior of the coupled multiple magneto-electro-elastic nanoplate system embedded in Kelvin–Voigt visco-Pasternak medium incorporating hygrothermal effects is analyzed using the higher-order nonlocal strain gradient assumption. It should be noted that to obtain a more precise modeling of small-scale structures when using higher-order nonlocal strain gradient theory, both hardening and softening effects of materials are considered. The governing equilibrium equations are derived based upon the classical Kirchhoff thin plate approach and Hamilton’s variational principle. The complex eigenvalues of the system are presented in the exact closed-form solutions and are validated by numerical results found from the trigonometric technique. Numerical studies are carried out to demonstrate the effects of the number of magneto-electro-elastic nanoplates, material length scale parameters, initial external electric and magnetic fields, visco-Pasternak foundation, and hygrothermal loading on how the system damped frequency curves are varied.

Notes

References

  1. 1.
    S. Ghahnavieh, S. Hosseini-Hashemi, K. Rajabi, Eur. Phys. J. Plus 133, 518 (2018)CrossRefGoogle Scholar
  2. 2.
    E. Khanmirza, A. Jamalpoor, A. Kiani, Eur. Phys. J. Plus 132, 422 (2017)CrossRefGoogle Scholar
  3. 3.
    M. Hosseini, M.R. Mofidi, A. Jamalpoor, M.S. Jahanshahi, Microsyst. Technol. 24, 2295 (2018)CrossRefGoogle Scholar
  4. 4.
    J. Li, Y. Xue, F. Li, Y. Narita, Compos. Struct. 207, 509 (2019)CrossRefGoogle Scholar
  5. 5.
    M.A. Eltaher, F.-A. Omar, W.S. Abdalla, E.H. Gad, Waves in Random Complex Media 29, 264 (2019)CrossRefGoogle Scholar
  6. 6.
    R. Ansari, R. Gholami, H. Rouhi, Thin-Walled Struct. 135, 12 (2019)CrossRefGoogle Scholar
  7. 7.
    F. Ramirez, P.R. Heyliger, E. Pan, J. Sound Vib. 292, 626 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    M. Vinyas, S.C. Kattimani, Compos. Struct. 178, 63 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Vinyas, S.C. Kattimani, Compos. Struct. 185, 51 (2018)CrossRefGoogle Scholar
  10. 10.
    G.R. Buchanan, Compos. Part B Eng. 35, 413 (2004)CrossRefGoogle Scholar
  11. 11.
    J. Chen, H. Chen, E. Pan, P.R. Heyliger, J. Sound Vib. 304, 722 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    J. Van Den Boomgaard, D.R. Terrell, R.A.J. Born, H.F.J.I. Giller, J. Mater. Sci. 9, 1705 (1974)ADSCrossRefGoogle Scholar
  13. 13.
    E. Pan, P.R. Heyliger, J. Sound Vib. 252, 429 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    C.-P. Wu, S.-J. Chen, K.-H. Chiu, Mech. Res. Commun. 37, 54 (2010)CrossRefGoogle Scholar
  15. 15.
    Y. Li, J. Zhang, Smart Mater. Struct. 23, 25002 (2013)CrossRefGoogle Scholar
  16. 16.
    M. Vinyas, S.C. Kattimani, Compos. Struct. 163, 216 (2017)CrossRefGoogle Scholar
  17. 17.
    M. Vinyas, S.C. Kattimani, Struct. Eng. Mech. 62, 519 (2017)Google Scholar
  18. 18.
    C.Q. Chen, Y. Shi, Y.S. Zhang, J. Zhu, Y.J. Yan, Phys. Rev. Lett. 96, 075505 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    G. Stan, C.V. Ciobanu, P.M. Parthangal, R.F. Cook, Nano Lett. 7, 3691 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    R. D. Mindlin, Arch. Ration. Mech. Anal. 16, (1964)Google Scholar
  21. 21.
    R.D. Mindlin, N.N. Eshel, Int. J. Solids Struct. 4, 109 (1968)CrossRefGoogle Scholar
  22. 22.
    R.D. Mindlin, Int. J. Solids Struct. 1, 417 (1965)CrossRefGoogle Scholar
  23. 23.
    R. Tiersten, Arch. Ration. Mech. Anal. 11(1), 415 (1962)MathSciNetCrossRefGoogle Scholar
  24. 24.
    R.A. Toupin, Arch. Ration. Mech. Anal. 11, 385 (1962)CrossRefGoogle Scholar
  25. 25.
    A.C. Eringen, Int. J. Eng. Sci. 10, 425 (1972)CrossRefGoogle Scholar
  26. 26.
    A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)ADSCrossRefGoogle Scholar
  27. 27.
    D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, J. Mech. Phys. Solids 51, 1477 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    P. Lu, L.H. He, H.P. Lee, C. Lu, Int. J. Solids Struct. 43, 4631 (2006)CrossRefGoogle Scholar
  29. 29.
    T. Aksencer, M. Aydogdu, Phys. E Low-Dimens. Syst. Nanostruct. 43, 954 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    R. Ansari, A. Shahabodini, M.F. Shojaei, V. Mohammadi, R. Gholami, Phys. E Low-Dimens. Syst. Nanostruct. 57, 126 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    M. Mohammadimehr, M. Salemi, B.R. Navi, Compos. Struct. 138, 361 (2016)CrossRefGoogle Scholar
  32. 32.
    L.-L. Ke, J. Yang, S. Kitipornchai, M.A. Bradford, Compos. Struct. 94, 3250 (2012)CrossRefGoogle Scholar
  33. 33.
    F. Ebrahimi, M.R. Barati, J. Brazilian Soc. Mech. Sci. Eng. 40, 428 (2018)CrossRefGoogle Scholar
  34. 34.
    M. Aydogdu, Phys. E Low-Dimens. Syst. Nanostruct. 41, 1651 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    S. Sahmani, M.M. Aghdam, J. Biomech. 65, 49 (2017)CrossRefGoogle Scholar
  36. 36.
    M. Şimşek, J.N. Reddy, Int. J. Eng. Sci. 64, 37 (2013)CrossRefGoogle Scholar
  37. 37.
    B. Akgöz, Ö. Civalek, Acta Astronaut. 119, 1 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    L.-L. Ke, Y.-S. Wang, J. Yang, S. Kitipornchai, Acta. Mech. Sin. 30, 516 (2014)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    F. Ebrahimi, M.R. Barati, Smart Mater. Struct. 25, 105014 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    R. Ansari, R. Gholami, Int. J. Struct. Stab. Dyn. 17, 1750014 (2017)MathSciNetCrossRefGoogle Scholar
  41. 41.
    A. Kiani, M. Sheikhkhoshkar, A. Jamalpoor, M. Khanzadi, J. Intell. Mater. Syst. Struct. 29, 741 (2018)CrossRefGoogle Scholar
  42. 42.
    A. Jamalpoor, A. Ahmadi-Savadkoohi, S. Hosseini-Hashemi, Smart Mater. Struct. 25, 105035 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    C.W. Lim, G. Zhang, J.N. Reddy, J. Mech. Phys. Solids 78, 298 (2015)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    F. Ebrahimi, M.R. Barati, A. Dabbagh, Int. J. Eng. Sci. 107, 169 (2016)CrossRefGoogle Scholar
  45. 45.
    F. Ebrahimi, M.R. Barati, Appl. Phys. A 122, 843 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    F. Ebrahimi, A. Dabbagh, Mater. Res. Express 4, 025003 (2017)ADSCrossRefGoogle Scholar
  47. 47.
    K. Rajabi, S. Hosseini-Hashemi, Mater. Res. Express 4, 075054 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    M. Mahinzare, M.J. Alipour, S.A. Sadatsakkak, M. Ghadiri, Mech. Syst. Signal Process. 115, 323 (2019)ADSCrossRefGoogle Scholar
  49. 49.
    F. Ebrahimi, M.R. Barati, Microsyst. Technol. 24, 1643 (2018)CrossRefGoogle Scholar
  50. 50.
    M. Arefi, M. Kiani, and M. H. Zamani, J. Sandw. Struct. Mater. p. 1099636218795378 (2018)Google Scholar
  51. 51.
    A. Farajpour, M.R.H. Yazdi, A. Rastgoo, M. Mohammadi, Acta Mech. 227, 1849 (2016)MathSciNetCrossRefGoogle Scholar
  52. 52.
    D. Shahsavari, B. Karami, S. Mansouri, Eur. J. Mech. 67, 200 (2018)CrossRefGoogle Scholar
  53. 53.
    T. Murmu, S. Adhikari, Compos. Part B Eng. 42, 1901 (2011)CrossRefGoogle Scholar
  54. 54.
    T. Murmu, J. Sienz, S. Adhikari, C. Arnold, Compos. Part B Eng. 44, 84 (2013)CrossRefGoogle Scholar
  55. 55.
    M. Hosseini, A. Jamalpoor, J. Therm. Stress. 38, 1428 (2015)CrossRefGoogle Scholar
  56. 56.
    M. Hosseini, M. Bahreman, A. Jamalpoor, Microsyst. Technol. 23, 3041 (2017)CrossRefGoogle Scholar
  57. 57.
    J.C. Liu, Y.Q. Zhang, L.F. Fan, Phys. Lett. A 381, 1228 (2017)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    M. Karimi, H.R. Mirdamadi, A.R. Shahidi, Microsyst. Technol. 23, 765 (2017)CrossRefGoogle Scholar
  59. 59.
    A. Jamalpoor, A. Ahmadi-Savadkoohi, M. Hosseini, S. Hosseini-Hashemi, Eur. J. Mech. A/Solids 63, 84 (2017)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    D. Karličić, S. Adhikari, T. Murmu, M. Cajić, Compos. Part B Eng. 66, 328 (2014)CrossRefGoogle Scholar
  61. 61.
    N. Radić, Compos. Part B Eng. 153, 465 (2018)CrossRefGoogle Scholar
  62. 62.
    M. Vinyas, S.C. Kattimani, Compos. Struct. 202, 1339 (2018)CrossRefGoogle Scholar
  63. 63.
    D. Karličić, P. Kozić, R. Pavlović, Appl. Math. Model. 40, 1599 (2016)MathSciNetCrossRefGoogle Scholar
  64. 64.
    A. Jamalpoor, M. Bahreman, M. Hosseini, J. Sandw. Struct. Mater. 21, 175 (2017)CrossRefGoogle Scholar
  65. 65.
    M. Malikan, V.B. Nguyen, Phys. E Low-Dimens. Syst. Nanostruct. 102, 8 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of New Sciences and TechnologiesUniversity of TehranTehranIran
  2. 2.Department of Mechanical Engineering, Karaj BranchIslamic Azad UniversityKarajIran

Personalised recommendations