Applied Physics A

, 125:612 | Cite as

Investigations of interstitial Bi0 interacting with intrinsic defects in bismuth-doped silica optical fiber

  • Lihong Han
  • Wenliang Xiao
  • Jie Zhang
  • Baonan Jia
  • Gang Liu
  • Xianchun ChenEmail author
  • Pengfei LuEmail author


The interaction mechanisms of interstitial Bi0 with intrinsic defects in bismuth-doped silica optical fiber are investigated by first-principles calculations. The results reveal that interstitial Bi0 easily interact with peroxygen defects and the reaction products are more stable. By analyzing the effective charges of the reaction products of interstitial Bi0 interacting with peroxy linkage (POL), non-bridging oxygen hole center with silicon dangling bond (NBOHC-Eʹ), and peroxy radicals with silicon dangling bond (POR-Eʹ), it finds that Bi atom is nearly divalent. For interstitial Bi0 interacting with oxygen deficiency center (ODC(I)), it forms a complex with two Si atoms in the defect. The method will be effective to understand interaction mechanism of interstitial Bi0 with intrinsic defects in bismuth-doped silica optical fiber.



This work was supported by the National Key Research and Development Program of China (No. 2018YFB0406601), the National Natural Science Foundation of China (No. 61675032) and the Open Program of State Key Laboratory of Functional Materials for Informatics. We acknowledge the computational support from the Beijing Computational Science Research Center (CSRC).


  1. 1.
    I.A. Bufetov, E.M. Dianov, Laser Phys. Lett. 6, 487 (2010)CrossRefGoogle Scholar
  2. 2.
    E.M. Dianov, J Lightwave Technol 31, 681 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    X. Wang, Q. Sheng, L. Hu, J. Zhang, Mater. Lett. 66, 156 (2012)CrossRefGoogle Scholar
  4. 4.
    A.N. Romanov, Z.T. Fattakhova, A.A. Veber, O.V. Usovich, E.V. Haula, V.N. Korchak, V.B. Tsvetkov, L.A. Trusov, P.E. Kazin, V.B. Sulimov, Opt. Express. 20, 7212 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, J. Qiu, Appl. Phys. Lett. 91, 1490 (2007)Google Scholar
  6. 6.
    G. Lakshminarayana, R. Jian, J. Qiu, J. Alloys Compd. 476, 878 (2009)CrossRefGoogle Scholar
  7. 7.
    V.V. Dvoyrin, V.M. Mashinsky, L.I. Bulatov, I.A. Bufetov, A.V. Shubin, M.A. Melkumov, E.F. Kustov, E.M. Dianov, A.A. Umnikov, V.F. Khopin, Opt. Lett. 31, 2966 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    K. Bi, D. Yang, J. Chen, Q. Wang, H. Wu, C. Lan, Y. Yang, Photon. Res. 7, 457 (2019)CrossRefGoogle Scholar
  9. 9.
    K. Bi, X. Wang, Y. Hao, M. Lei, G. Dong, J. Zhou, J. Alloys Compd. 785, 1264 (2019)CrossRefGoogle Scholar
  10. 10.
    H.J. Xu, K. Bi, Y.N. Hao, J.M. Zhang, J.C. Xu, J. Dai, K. Xu, J. Zhou, IEEE Antenna Wirel. Propag. Lett. 17, 2494 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    S. Lin, H.Y. Wang, F. Wu, Q.M. Wang, X.P. Bai, D. Zu, J.N. Song, D. Wang, Z.L. Liu, Z.W. Li, N. Tao, K. Huang, M. Lei, B. Li, H. Wu, NPJ Flex. Electron. 3, 6 (2019)CrossRefGoogle Scholar
  12. 12.
    Y. Fujimoto, M. Nakatsuka, Jpn. J. Appl. Phys. 40, L279 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Fujimoto, M. Nakatsuka, Appl. Phys. Lett. 82, 3325 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    E.M. Dianov, V.V. Dvoyrin, V.M. Mashinsky, A.A. Umnikov, M.A. Yashkov, Quant. Electron. 35, 1083 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    V.G. Truong, L. Bigot, A. Lerouge, M. Douay, I. Razdobreev, Appl. Phys. Lett. 92, L279 (2008)CrossRefGoogle Scholar
  16. 16.
    X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, C. Zhu, Opt. Express. 13, 1628 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    B. Jia, P. Lu, Z. Peng, B. Yan, B. Yang, Y. Wang, G.D. Peng, J. Lumin. 198, 384 (2018)CrossRefGoogle Scholar
  18. 18.
    A. Stiegelschmitt, L. Wondraczek, M. Peng, N. Da, S. Krolikowski, Opt. Express. 17, 21169 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Fujimoto, M. Nakatsuka, Non-Cryst. Solids. 352, 2254 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    H.P. Xia, X.J. Wang, Appl. Phys. Lett. 89, 102 (2006)Google Scholar
  21. 21.
    J. Wen, T. Wang, F. Pang, X. Zeng, Z. Chen, G.D. Peng, Jpn. J. Appl. Phys. 52, 4 (2013)CrossRefGoogle Scholar
  22. 22.
    J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, C. Zhu, Solid State Commun. 140, 38 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    S. Khonthon, S. Morimoto, Y. Arai, Y. Ohishi, J. Ceram. Soc. Jpn. 115, 259 (2007)CrossRefGoogle Scholar
  24. 24.
    S. Khonthon, S. Morimoto, Y. Arai, Y. Ohishi, Suranaree J. Sci. Tech. 14, 141 (2007)Google Scholar
  25. 25.
    M. Peng, J. Qiu, D. Chen, X. Meng, C. Zhu, Opt. Lett. 30, 2433 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    S. Lin, H.Y. Wang, X.N. Zhang, D. Wang, D. Zu, J.N. Song, Z.L. Liu, Y. Huang, K. Huang, N. Tao, Z.W. Li, X.P. Bai, B. Li, M. Lei, Z.F. Yu, Hui Wu. Nano Energy 62, 111 (2019)CrossRefGoogle Scholar
  27. 27.
    X.T. Wang, Y. Cui, T. Li, M. Lei, J.B. Li, Z.M. Wei, Adv. Opt. Mater. 7, 1801274 (2019)CrossRefGoogle Scholar
  28. 28.
    M. Peng, L. Wondraczek, Opt. Lett. 35, 2544 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    M.D. Jong, A. Meijerink, R.A. Gordon, Z. Barandiarán, L. Seijo, J. Phys. Chem. C. 118, 9696 (2014)CrossRefGoogle Scholar
  30. 30.
    J. Li, J. Liu, X. Yu, J. Alloys Compd. 509, 9897 (2011)CrossRefGoogle Scholar
  31. 31.
    P. Lu, T. Ren, B. Jia, B. Yan, D. Liu, M. Guo, Y. Wang, G.D. Peng, IEEE J. Sel. Top. Quant. Electron. 24, 1 (2017)Google Scholar
  32. 32.
    B. Jia, P. Lu, J. Zhang, Z. Peng, B. Yan, Y. Wang, G.D. Peng, J. Cluster Sci. 29, 861 (2018)CrossRefGoogle Scholar
  33. 33.
    N. Zhang, J. Qiu, G. Dong, Z. Yang, Q. Zhang, M. Peng, J. Mater. Chem. 22, 3154 (2012)CrossRefGoogle Scholar
  34. 34.
    L. Zhang, G. Dong, J. Wu, M. Peng, J. Qiu, J. Alloys Compd. 531, 10 (2012)CrossRefGoogle Scholar
  35. 35.
    J. Zhang, L. Han, Z. Guan, B. Jia, Z. Peng, X. Guan, B. Yan, G. Peng, P. Lu, J. Lumin. 207, 346 (2019)CrossRefGoogle Scholar
  36. 36.
    M. Peng, C. Zollfrank, L. Wondraczek, J. Phys. Condens. Matter. 21, 285106 (2009)CrossRefGoogle Scholar
  37. 37.
    V.O. Sokolov, V.G. Plotnichenko, E.M. Dianov, Opt. Mater. Express. 3, 1059 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    R.W. Godby, M. Schlüter, L.J. Sham, Phys. Rev. B Condens. Matter. 37, 10159 (1988)ADSCrossRefGoogle Scholar
  39. 39.
    L. Hedin, Phys. Rev. 139, 663 (2008)Google Scholar
  40. 40.
    R.L. Mozzi, B.E. Warren, J. Appl. Crystallogr. 2, 164 (1969)CrossRefGoogle Scholar
  41. 41.
    M. Sitarz, W. Mozgawa, M. Handke, J. Mol. Struct. 511, 281 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    G. Kresse, Phys. Rev. B Condens. Matter. 48, 13115 (1993)ADSCrossRefGoogle Scholar
  43. 43.
    G. Kresse, J. Hafner, Phys. Rev. B Condens. Matter. 49, 14251 (1994)ADSCrossRefGoogle Scholar
  44. 44.
    L.Y. Wu, P.F. Lu, R.G. Quhe, Q. Wang, C.H. Yang, P.F. Guan, K.S. Yang, J. Mater. Chem. A 6, 7933 (2018)CrossRefGoogle Scholar
  45. 45.
    L.Y. Wu, P.F. Lu, Y.H. Li, Y. Sun, J. Wong, K.S. Yang, J. Mater. Chem. A 6, 24389 (2018)CrossRefGoogle Scholar
  46. 46.
    Q. Wang, X. Li, L.Y. Wu, P.F. Lu, Z.F. Di, Phys. Status Solidi RRL 13, 1800461 (2019)CrossRefGoogle Scholar
  47. 47.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  48. 48.
    G. Henkelman, B.P. Uberuaga, H. Jónsson, J. Chem. Phys. 113, 9901 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Information Photonics and Optical CommunicationsBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.Beijing Key Laboratory of Space-Ground Interconnection and ConvergenceBeijing University of Posts and TelecommunicationsBeijingChina
  3. 3.College of Materials Science and EngineeringSichuan UniversityChengduChina

Personalised recommendations