Advertisement

Applied Physics A

, 125:501 | Cite as

The effect of chlorine/argentum atomic ratios on electrochemical behaviors and signal acquisition abilities of embroidered electrodes for bio-potential signal measurement

  • Hao LiuEmail author
  • Dongyu Tang
  • Yao Hu
  • Lei Xu
  • Jinzhong Song
  • Wei WangEmail author
  • Bowen Cheng
Article

Abstract

Bio-potential dry electrode is an important part of smart garments or wearable devices for monitoring bio-potential signals. In this work, embroidered electrodes are developed by embroidering silver-plated yarns in woven fabric. Then, AgCl is electrochemically deposited on silver-plated yarns in the embroidered electrode, and the chlorine/argentum (Cl/Ag) atomic ratios can be adjusted by the chlorination time. Moreover, a novel active evaluation system of wearable bio-potential electrodes developed by our group is utilized to evaluate the performance of the embroidered electrodes, and two novel indexes (bio-potential phase shift and voltage amplitude attenuation) were presented for evaluating the performance of embroidered electrodes. Results show that the chlorination of silver-plated yarns can improve the performance of embroidered electrodes. The electrochemical behaviors and signal acquisition abilities of the embroidered electrodes can be affected by Cl/Ag atomic ratios. The embroidered electrodes with the Cl/Ag atomic ratios of 62% (E-90) have the lowest impedance (3364 ± 894 O), and their static open-circuit potential and dynamic open-circuit potential variation are all less than 7 mV. During the standard ECG signal test, E-90 shows the minimum bio-potential phase shift (0.011 s), voltage amplitude attenuation (11.768%), noise amplitude (0.025 mV), and maximum signal to noise (41 dB). The noise amplitude of human body ECG of E-90 is also the lowest (0.013 mV) and signal to noise is the maximum (40.996 dB). The embroidered electrodes have broad application prospects in long-term health-monitoring system.

Notes

Acknowledgements

This work received the financial support of the National Natural Science Foundation of China (Grant No. 51473122), Postdoctoral Science Foundation of China (Grant No. 2016M591390), and the Natural Science Foundation of Tianjin (Grant No. 18JCYBJC18500).

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

References

  1. 1.
    Z. Cai, K. Luo, C. Liu, J. Li, Design of a smart ECG garment based on conductive textile electrode and flexible printed circuit board. Technol. Health Care 25, 815–821 (2017)CrossRefGoogle Scholar
  2. 2.
    Y. Jiang, O. Samuel, X. Liu, X. Wang, P. Idowu, P. Li, F. Chen, M. Zhu, Y. Geng, F. Wu, S. Chen, G. Li, Effective biopotential signal acquisition: comparison of different shielded drive technologies. Appl. Sci. Basel 8, 276 (2018)CrossRefGoogle Scholar
  3. 3.
    R.J. Cochran, T. Rosen, Contact dermatitis caused by ECG electrode paste. South. Med. J. 73, 1667–1668 (1980)CrossRefGoogle Scholar
  4. 4.
    W. Uter, H.J. Schwanitz, Contact dermatitis from propylene glycol in ECG electrode gel. Contact Dermat. 34, 230–231 (1996)CrossRefGoogle Scholar
  5. 5.
    N. Meziane, S. Yang, M. Shokoueinejad, J.G. Webster, M. Attari, H. Eren, Simultaneous comparison of 1 gel with 4 dry electrode types for electrocardiography. Physiol. Meas. 36, 513–529 (2015)CrossRefGoogle Scholar
  6. 6.
    H. Peng, J. Liu, Y. Dong, B. Yang, X. Chen, C. Yang, Parylene-based flexible dry electrode for bioptential recording. Sens. Actuat. B Chem. 231, 1–11 (2016)CrossRefGoogle Scholar
  7. 7.
    W. Pei, H. Zhang, Y. Wang, X. Guo, X. Xing, Y. Huang, Y. Xie, X. Yang, H. Chen, Skin-potential variation insensitive dry electrodes for ECG recording. IEEE Trans. Biomed. Eng. 64, 463–470 (2017)CrossRefGoogle Scholar
  8. 8.
    C. Fonseca, F. Vaz, M.A. Barbosa, Electrochemical behaviour of titanium coated stainless steel by RF sputtering in synthetic sweat solutions for electrode applications. Corros. Sci 46, 3005–3018 (2004)CrossRefGoogle Scholar
  9. 9.
    C. Fonseca, J.P.S. Cunha, R.E. Martins, V.M. Ferreira, J.P.M. de Sa, M.A. Barbosa, A. Martins Da Silva, A novel dry active electrode for eeg recording. IEEE Trans. Biomed. Eng. 54, 162–165 (2007)CrossRefGoogle Scholar
  10. 10.
    P. Fiedler, S. Griebel, P. Pedrosa, C. Fonseca, F. Vaz, L. Zentner, F. Zanow, J. Haueisen, Multichannel EEG with novel Ti/TiN dry electrodes. Sens. Actuat. A Phys. 221, 139–147 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Huang, C. Wu, A.M. Wong, B. Lin, Novel active comb-shaped dry electrode for EEG measurement in hairy site. IEEE Trans. Biomed. Eng. 62, 256–263 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Pourahmad, A. Mahnam, Evaluation of a low-cost and low-noise active dry electrode for long-term biopotential recording. J. Med. Signals Sens. 6, 197–202 (2016)Google Scholar
  13. 13.
    P. Pedrosa, D. Machado, P. Fiedler, E. Alves, N.P. Barradas, J. Haueisen, F. Vaz, C. Fonseca, Electrochemical and structural characterization of nanocomposite Ag-y:TiNx thin films for dry bioelectrodes: the effect of the N/Ti ratio and Ag content. Electrochim. Acta 153, 602–611 (2015)CrossRefGoogle Scholar
  14. 14.
    N.S. Dias, J.P. Carmo, A.F. Da Silva, P.M. Mendes, J.H. Correia, New dry electrodes based on iridium oxide (IrO) for non-invasive biopotential recordings and stimulation. Sens. Actuat. A Phys. 164, 28–34 (2010)CrossRefGoogle Scholar
  15. 15.
    M. Dimaki, P. Vazquez, A. Aimone, M.H. Olsen, L. Sasso, R. Rodriguez-Trujillo, W.E. Svendsen, Novel 3D microelectrodes and pipettes by wet and dry etching. Microelectron. Eng. 100, 33–36 (2012)CrossRefGoogle Scholar
  16. 16.
    L. Hsu, S. Tung, C. Kuo, Y. Yang, Developing barbed microtip-based electrode arrays for biopotential measurement. Sensors Basel 14, 12370–12386 (2014)CrossRefGoogle Scholar
  17. 17.
    F. Nicolas Guerrero, E. Mario Spinelli, A two-wired ultra-high input impedance active electrode. IEEE Trans. Biomed. Circuit Syst. 12, 437–445 (2018)CrossRefGoogle Scholar
  18. 18.
    G. Paul, R. Torah, S. Beeby, J. Tudor, A printed, dry electrode Frank configuration vest for ambulatory vectorcardiographic monitoring. Smart Mater. Struct. 26, 025029 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    M.K. Yapici, T. Alkhidir, Y.A. Samad, K. Liao, Graphene-clad textile electrodes for electrocardiogram monitoring. Sens. Actuat. B Chem. 221, 1469–1474 (2015)CrossRefGoogle Scholar
  20. 20.
    T. Bystricky, D. Moravcova, P. Kaspar, R. Soukup, A. Hamacek, A comparison of embroidered and woven textile electrodes for continuous measurement of ECG, in International Spring Seminar on Electronics Technology ISSE (2016), pp. 7–11Google Scholar
  21. 21.
    T. Kannaian, R. Neelaveni, G. Thilagavathi, Design and development of embroidered textile electrodes for continuous measurement of electrocardiogram signals. J. Ind. Text. 42, 303–318 (2012)CrossRefGoogle Scholar
  22. 22.
    M.A. Yokus, J.S. Jur, Fabric-based wearable dry electrodes for body surface biopotential recording. IEEE Trans. Biomed. Eng. 63, 423–430 (2016)CrossRefGoogle Scholar
  23. 23.
    H. Liu, X. Tao, P. Xu, H. Zhang, Z. Bai, A dynamic measurement system for evaluating dry bio-potential surface electrodes. Measurement 46, 1904–1913 (2013)CrossRefGoogle Scholar
  24. 24.
    S. Hersek, H. Toreyin, C.N. Teague, M.L. Millard-Stafford, H. Jeong, M.M. Bavare, P. Wolkoff, M.N. Sawka, O.T. Inan, Wearable vector electrical bioimpedance system to assess knee joint health. IEEE Trans. Biomed. Eng. 64, 2353–2360 (2017)CrossRefGoogle Scholar
  25. 25.
    P.S. Das, M.F. Hossain, J.Y. Park, Chemically reduced graphene oxide-based dry electrodes as touch sensor for electrocardiograph measurement. Microelectron. Eng. 180, 45–51 (2017)CrossRefGoogle Scholar
  26. 26.
    L. Jin, K.J. Kim, E.H. Song, Y.J. Ahn, Y.J. Jeong, T.I. Oh, E.J. Woo, Highly precise nanofiber web-based dry electrodes for vital signal monitoring. RSC Adv. 6, 40045–40057 (2016)CrossRefGoogle Scholar
  27. 27.
    T.I. Oh, S. Yoon, T.E. Kim, H. Wi, K.J. Kim, E.J. Woo, R.J. Sadleir, Nanofiber web textile dry electrodes for long-term biopotential recording. IEEE Trans. Biomed. Circuits Syst. 7, 204–211 (2013)CrossRefGoogle Scholar
  28. 28.
    S.R. Wiese, P. Anheier, R.D. Connemara, A.T. Mollner, T.F. Neils, J.A. Kahn, J.G. Webster, Electrocardiographic motion artifact versus electrode impedance. IEEE Trans. Biomed. Eng. 52, 136–139 (2005)CrossRefGoogle Scholar
  29. 29.
    A.R. Mota, L. Duarte, D. Rodrigues, A.C. Martins, A.V. Machado, F. Vaz, P. Fiedler, J. Haueisen, J.M. Nóbrega, C. Fonseca, Development of a quasi-dry electrode for EEG recording. Sens. Actuat. A Phys. 199, 310–317 (2013)CrossRefGoogle Scholar
  30. 30.
    F.N. Guerrero, E. Spinelli, High gain driven right leg circuit for dry electrode systems. Med. Eng. Phys. 39, 117–122 (2017)CrossRefGoogle Scholar
  31. 31.
    H.F. Posada-Quintero, R. Rood, Y. Noh, K. Burnham, J. Pennace, K.H. Chon, Dry carbon/salt adhesive electrodes for recording electrodermal activity. Sens. Actuat. A Phys. 257, 84–91 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Textiles Science and EngineeringTianjin Polytechnic UniversityTianjinPeople’s Republic of China
  2. 2.Institute of Smart Wearable Electronic TextilesTianjin Polytechnic UniversityTianjinPeople’s Republic of China
  3. 3.Key Laboratory of Advanced Composite Materials, Ministry of EducationTianjin Polytechnic UniversityTianjinPeople’s Republic of China
  4. 4.China Astronaut Research and Training CenterBeijingPeople’s Republic of China

Personalised recommendations