Advertisement

Applied Physics A

, 125:498 | Cite as

Investigation of magnetic and relaxor dielectric properties of polycrystalline gadolinium iron garnet by Bi substitution

  • Aakansha
  • S. RaviEmail author
Article
  • 4 Downloads

Abstract

We have synthesized Bi-substituted gadolinium iron garnet [(Gd3−xBix)Fe5O12] samples with x = 0, 0.5, and 1.0 and studied their structural, magnetic, and dielectric properties. All samples are found to be in single-phase form with cubic structure as per the Rietveld analysis based on \(Ia\bar{3}d\) space group. Bi substitution leads to increase in lattice constant, Fe(a)–Fe(d) bond length and Fe(a)–O–Fe(d) bond angles, and they have direct influence on magnetic properties. All samples undergo ferrimagnetic transition followed by magnetic compensation behavior at low temperature. The ferrimagnetic transition temperature (Tc) is found to increase from 576 K for x = 0 to 596 K for x = 1.0. However, the magnetic compensation temperature (Tcomp) decreases from 296 to 176 K. They are explained in terms of increase in Fe(a)–O–Fe(d) bond angle and the dilution of magnetic moment at Gd site. The analysis of impedance spectra at room temperature and at higher temperature shows that Bi substitution gives rise to larger impedance due to the localization as well as reduction in the concentration of charge carriers. The activation energy of charge-carrier relaxation is found to be in the range of 0.9–1.0 eV. The temperature variation of dielectric constant data and their analysis based on modified Curie–Weiss law show the relaxor ferroelectric transition with a typical diffuseness exponent, γ close to 2.0.

Notes

Acknowledgements

We acknowledge Central Instrument Facility, Indian Institute of Technology Guwahati (IITG) for high-temperature magnetic measurement, FESEM, and EDS facilities.

References

  1. 1.
    M.P. Horvath, J. Magn. Magn. Mater. 215, 171 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    D.D. Stanul, Spin Wave Theory and Applications (Springer, New York, 2009)Google Scholar
  3. 3.
    M. Ristić, I. Nowik, S. Popović, I. Felner, S. Musić, Mater. Lett. 57, 2584 (2003)CrossRefGoogle Scholar
  4. 4.
    M.M. Rashad, M.M. Hessien, A. El-Midany, I.A. Ibrahim, J. Magn. Magn. Mater. 321, 3752 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    S.K. Patri, R.N.P. Choudhary, B.K. Samantaray, Solid State Commun. 144, 441 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    H. Kidoh, A. Morimoto, T. Shimizu, Appl. Phys. Lett. 59, 237 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    C. Jiang, Phys. B 373, 42 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    S. Geller, M.A. Gilleo, J. Phys. Chem. Solids 3, 30 (1957)ADSCrossRefGoogle Scholar
  9. 9.
    P.K. Larsen, R. Metselaar, Phys. Rev. B 14, 2520 (1976)ADSCrossRefGoogle Scholar
  10. 10.
    J.C. McCloy, B. Walsh, IEEE Trans. Magn. 49, 4253 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    E.J.J. Mallmann, A.S.B. Sombra, J.C. Goes, P.B.A. Fechine, Solid State Phenom. 202, 65 (2013)CrossRefGoogle Scholar
  12. 12.
    B.J.H. Stadler, T. Mizumoto, J. IEEE Photonics 6, 0600215 (2014)CrossRefGoogle Scholar
  13. 13.
    Aakansha, B. Deka, S. Ravi, J. Supercond. Novel Magn. 31, 2121 (2018)CrossRefGoogle Scholar
  14. 14.
    Y. Kohara, Y. Yamasaki, Y. Onose, Y. Tokura, Phys. Rev. B 82, 104419 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Y.J. Wu, Y. Gao, X.M. Chen, Appl. Phys. Lett. 91, 092912 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    H. Wu, F. Huang, T. Xu, R. Ti, X. Lu, Y. Kan, X. Lv, W. Zhu, J. Zhu, J. Appl. Phys. 117, 144101 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    H. Zhao, J. Zhou, Y. Bai, Z. Gui, L. Li, J. Magn. Magn. Mater. 280, 208 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    K. Praveena, S. Srinath, J. Magn. Magn. Mater. 349, 45 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Y.J. Wu, C. Yu, X.M. Chen, J. Li, Appl. Phys. Lett. 100, 052902 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Yamasaki, Y. Kohara, Y. Tokura, Phys. Rev. B 80, 140412 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    A. Maignan, K. Singh, C. Simon, O.I. Lebedev, C. Martin, H. Tan, J. Verbeeck, G.V. Tendeloo, J. Appl. Phys. 113, 033905 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    N. Hur, S. Park, S. Guha, A. Borissov, V. Kiryukhin, S.W. Cheong, Appl. Phys. Lett. 87, 042901 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    Aakansha, B. Deka, S. Ravi, D. Pamu, Ceram. Int. 43, 10468 (2017)CrossRefGoogle Scholar
  24. 24.
    Aakansha, S. Ravi, J. Am. Ceram. Soc. 101, 5046 (2018)CrossRefGoogle Scholar
  25. 25.
    G.F. Dionne, J. Appl. Phys. 42, 2142 (1971)ADSCrossRefGoogle Scholar
  26. 26.
    J.C. Waerenborgh, D.P. Rojas, A.L. Shaula, V.V. Kharton, F.M.B. Marques, Mater. Lett. 58, 3432 (2004)CrossRefGoogle Scholar
  27. 27.
    T. Ramesh, R.S. Shinde, S.R. Murthy, J. Magn. Magn. Mater. 324, 3668 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    D.T.T. Nguyet, N.P. Duong, T. Satoh, L.N. Anh, T.D. Hien, J. Magn. Magn. Mater. 332, 180 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    M.H. Phan, M.B. Morales, C.N. Chinnasamy, B. Latha, V.G. Harris, H. Srikanth, J. Phys. D Appl. Phys. 42, 115007 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    A.A. Sattar, H.M. Elsayed, A.M. Faramawy, J. Magn. Magn. Mater. 412, 172 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    M.N. Akhtar, K. Ali, A. Umer, T. Ahmad, M.A. Khan, Mater. Res. Bull. 101, 48 (2018)CrossRefGoogle Scholar
  32. 32.
    A. Ranjan, S.L. Das, K.S. Sibi, G. Subodh, J. Electr. Mater. 48, 1133 (2019)ADSCrossRefGoogle Scholar
  33. 33.
    Y.J. Siao, X. Qi, C.R. Lin, J.C.A. Haung, J. Appl. Phys. 109, 07A508 (2011)CrossRefGoogle Scholar
  34. 34.
    Y.J. Wu, C. Yu, X.M. Chen, J. Li, J. Magn. Magn. Mater. 324, 3334 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    A. Durán, C. Ostos, O. Arnache, J.M. Siqueiros, M. García-Guaderrama, J. Appl. Phys. 122, 134101 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    R.A. Young, The Rietveld Method, IUCr Monographs on Crystallography-5 (International Union of Crystallography/Oxford University Press, Oxford, 1995)Google Scholar
  37. 37.
    J.E. Weidenborner, Acta. Cryst. 14, 1051 (1961)CrossRefGoogle Scholar
  38. 38.
    B. Vertruyen, R. Cloots, J.S. Abell, T.J. Jackson, R.C. da Silva, E. Popova, N. Keller, Phys. Rev. B 78, 094429 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    M.A. Gilleo, Phys. Rev. 109(3), 777 (1958)ADSCrossRefGoogle Scholar
  40. 40.
    J.F. Herbst, F.E. Pinketon, Phys. Rev. B. 57, 10733 (1998)ADSCrossRefGoogle Scholar
  41. 41.
    C.D. Graham, Phys. Rev. 112, 1117 (1958)ADSCrossRefGoogle Scholar
  42. 42.
    S.R. Elliott, Solid State Ionics 70–71, 27 (1994)CrossRefGoogle Scholar
  43. 43.
    J. Wu, J. Wang, J. Am. Ceram. Soc. 93, 2795 (2010)CrossRefGoogle Scholar
  44. 44.
    K. Uchino, S. Nomura, Ferroelectric 44, 55 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations