Advertisement

Applied Physics A

, 125:493 | Cite as

Gas sensing performances of pure and Cu-doped ZrO2 nano structures

  • E. Hemalatha
  • N. GopalakrishnanEmail author
Article
  • 43 Downloads

Abstract

In this paper, we report the gas sensing studies of pure and Cu-doped (3%, 5%, 10%, and 15%) ZrO2 synthesized by conventional precipitation method using ZrOCl2·8H2O and CuCl2·2H2O as precursor, distilled water as solvent and NaOH as a stabilizing agent. The films have been prepared by drop casting method and subjected to XRD, SEM, IV measurement, UV-DRS spectroscopy and photoluminescence studies to characterize the material properties. SEM images shows that the samples have uniform distributed spherical like structure. The IV measurement certifies the ohmic contact of the samples with electrode. The emission peak obtained in PL study validates the presence of oxygen vacancies in the prepared samples. From the UV-DRS study, band gap of the samples were found to decrease with increase in doping concentration. The gas sensing ability of the prepared samples has been done by an exposure of different reducing gases (ammonia, ethanol, formaldehyde, acetone and xylene) at different temperatures and various gas concentrations. The response and recovery time of the samples are also assessed. From the data, it has been found that all the films shows better response towards ammonia. It has been found that 15% of Cu-ZrO2 sensor showed higher sensitivity (43.18%), faster response (60 s) and recovery time (60 s) among all the samples which proves that the addition of Cu boosted up the gas sensing nature of ZrO2 nano structure.

Notes

References

  1. 1.
    M.A. Gondal, T.A. Fasasi Umair Baig, A. Mekki, J. Nanosci. Nanotechnol. 17, 1 (2017)CrossRefGoogle Scholar
  2. 2.
    N.K. Hassan, M.R. Hashim, Y. Al-Douri, Optik 125, 2560 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    B.U. Haq, R. Ahmed, A. Shaari, N. Ali, Y. Al-Douri, A.H. Reshak, Mater. Sci. Semicond. Process. 43, 123 (2016)CrossRefGoogle Scholar
  4. 4.
    M. Kashif, Y. Al-Douri, U. Hashim, M.E. Ali, S.M.U. Ali, M. Willander, Micro. Nano Lett. 7(2), 163 (2012)CrossRefGoogle Scholar
  5. 5.
    N.K. Hassan, M.R. Hashim, Y. Al-Douri, K. Al-Heuseen, Int. J. Electrochem. Sci. 7, 4625 (2012)Google Scholar
  6. 6.
    I. John Berlin, K. Joy, Physica B. 457, 182 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    S. Wang, J. Shen, J. Sol-Gel. Sci. Technol. 67, 339 (2013)CrossRefGoogle Scholar
  8. 8.
    N.-Q. Yao, Z.-C. Liu, G.-R. Gu, B.-J. Wu, Chin. Phys. B 26(10), 106801 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    R.H. Bari, S.B. Patil, S.B. Deshmukh, J. Nanosci. Nanotechnol. 2(3), 181 (2016)Google Scholar
  10. 10.
    A.K. Singh, U.T. Nakate, Sci. World J. 2014, 1 (2014)Google Scholar
  11. 11.
    A.S. Keiteb, E. Saion, A. Zakaria, N. Soltani, J Nanomater. 2016, 1 (2016)CrossRefGoogle Scholar
  12. 12.
    A. Dankeaw, G. Poungchan, M. Panapoy, B. Ksapabutr, Sens Actuators B Chem. 242, 202 (2017)CrossRefGoogle Scholar
  13. 13.
    Y. Al-Douri, A.H. Reshak, W.K. Ahmed, A.J. Ghazai, Mater. Express 4(2), 159 (2014)CrossRefGoogle Scholar
  14. 14.
    Y. Al-Douri, A.J. Haider, A.H. Reshak, A. Bouhemadou, M. Ameri, Optik 127, 10102 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    I. John Berlin, K. Joy, Physica B. 457, 182 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    T. Götsch, W. Wallisch, M. Stöger-Pollach, B. Klötzer, S. Penner, AIP Adv. 6, 025119 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    N.B. Hassan, G.H. Mohamad, M.M. Abd-Alkadum, IJCET 4(3), 1627 (2014)Google Scholar
  18. 18.
    D. Prakash, C. Amente, K. Dharamvir, B. Singh, R. Singh, E.R. Shaaban, Y. Al-Douri, R. Khenata, M. Darroudi, K.D. Verma, Ceram. Int. 42, 5600 (2016)CrossRefGoogle Scholar
  19. 19.
    A. Dankeaw, G. Poungchan, M. Panapoy, B. Ksapabutr, Sens. Actuators B Chem. 242, 202 (2017)CrossRefGoogle Scholar
  20. 20.
    A. Khayatian, S. Safa, R. Azimirad, M. Almasi Kashi, S.F. Akhtarianfar, Physica E 84, 71 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    S. Safa, R. Azimirad, Kh Mohammadi, R. Hejazi, A. Khayatian, Measurement 73, 588 (2015)CrossRefGoogle Scholar
  22. 22.
    K. Gherab, Y. Al-Douri, C.H. Voon, U. Hashim, M. Ameri, A. Bouhemadou, Results Phys. 7, 1190 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    X. Xu, X. Wang, Nano Res. 2, 891 (2009)CrossRefGoogle Scholar
  24. 24.
    A. Styskalik, D. Skoda, C.E. Barnes, J. Pinkas, Catalysts 7(6), 168 (2017)CrossRefGoogle Scholar
  25. 25.
    N. Chandra, D.K. Singh, M. Sharma, R.K. Upadhyay, S.S. Amritphale, S.K. Sanghi, J. Colloid Interface Sci. 342, 327 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    S. Chang, R. Doong, Thin Solid Films 489, 17 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    S.-W. Wang, X.-X. Huang, J.-K. Guo, J. Eur. Ceram. Soc. 16, 1057 (1996)CrossRefGoogle Scholar
  28. 28.
    B. Tyagi, K. Sidhpuria, B. Shaik, R.V. Jasra, Mater. Interfaces 45, 8643 (2006)Google Scholar
  29. 29.
    V. Thakare, IJERD 5, 25 (2012)Google Scholar
  30. 30.
    Y. Al-Douri, S.A. Abdulateef, A.A. Odeh, C.H. Voon, N. Badi, Powder Technol. 320, 457 (2017)CrossRefGoogle Scholar
  31. 31.
    A. Rais, K. Taibi, A. Addou, A. Zanoun, Y. Al-Douri, Ceram. Int. 40, 14413 (2014)CrossRefGoogle Scholar
  32. 32.
    R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y. Al-Douri, Ceram. Int. 39, 2283 (2013)CrossRefGoogle Scholar
  33. 33.
    K. Geethalakshmi, T. Prabhakaran, J. Hemalatha, JoMME 6(4), 256 (2012)Google Scholar
  34. 34.
    L. Chowa, O. Lupana, G. Chaia, H. Khallafa, L.K. Onoa, B. Roldan Cuenyaa, I.M. Tiginyanuf, V.V. Ursakif, V. Sonteac, A. Schultea, Sens. Actuator A Phys. 189, 399 (2013)CrossRefGoogle Scholar
  35. 35.
    S.N. Basahel, T.T. Ali, M. Mokhtar, K. Narasimharao, Nanoscale Res. Lett. 10, 1 (2015)CrossRefGoogle Scholar
  36. 36.
    S. Bhuvaneshwari, N. Gopalakrishnan, J. Alloy. Compd. 654, 202 (2016)CrossRefGoogle Scholar
  37. 37.
    G. Viruthagiri, E. Gopinathan, N. Shanmugam, R. Gobi, Spectrochim. Acta 131, 556 (2014)CrossRefGoogle Scholar
  38. 38.
    H.G. Hecht, J. Res. Natl. Bur. Stand. Sec. A. 80A(4), 567 (1976)CrossRefGoogle Scholar
  39. 39.
    E. Vinoth, S. Gowrishankar, N. Gopalakrishnan, Mater. Manuf. Process. 32(4), 377 (2016)CrossRefGoogle Scholar
  40. 40.
    I. John Berlin, V.S. Anitha, P.V. Thomas, K. Joy, J. Sol-Gel Sci. Technol. 64, 289 (2012)CrossRefGoogle Scholar
  41. 41.
    I. John Berlin, IJARSE 6(3), 204 (2017)Google Scholar
  42. 42.
    R. Mosca, M. Zha, D. Calestani, L. Lazzarini, G. Salviati, A. Zappettini, L. Zanotti, E. Comini, G. Sberveglieri, Mater. Res. Soc. 915, 1 (2006)CrossRefGoogle Scholar
  43. 43.
    P. Shankar, J.B.B. Rayappan, Sci. Lett. J. 4, 126 (2015)Google Scholar
  44. 44.
    S.B. Deshmukh, R.H. Bari, G.E. Patil, D.D. Kajale, G.H. Jain, L.A. Patil, Int. J. Smart Sensing Intell. Syst. 5(3), 540 (2012)CrossRefGoogle Scholar
  45. 45.
    S. Bhuvaneshwari, N. Gopalakrishnan, Cryst. Res. Technol. 51(2), 145 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Thin Film Laboratory, Department of PhysicsNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations