Advertisement

Applied Physics A

, 125:492 | Cite as

Citrate-assisted galvanic replacement for fabrication of homogeneous Ag nanosheets as high-performance SERS substrate

  • Xinxin Li
  • Xiang LinEmail author
  • Benkang Liu
  • Xuelin Zhao
  • Haiyan Zhao
  • Li WangEmail author
  • Shulin CongEmail author
Article
  • 44 Downloads

Abstract

An effective and simple method for the fabrication of Ag nanosheets (NSs) was developed via citrate-assisted galvanic replacement at room temperature. The effects of reaction time, concentration of AgNO3 and citrate on the morphology and surface-enhanced Raman scattering (SERS) performance of Ag NSs were investigated systematically. The results indicated that citrate played a vital role on preparing uniform Ag NSs, because it could retard the reaction rate and control the direction of Ag growth. Furthermore, citrate was bound weakly toward Ag NSs and easily replaced by probe molecules, which opened a new avenue for the fabrication of clean SERS substrates. In addition, the Ag NSs substrate exhibited a high sensitivity in SERS detection and the analytical enhancement factor was up to 7.93 × 105 with the minimum detected concentration of R6G as low as 10−8 M. Moreover, the color mapping was relatively uniform and the relative standard deviation was below 15%, revealing that the SERS performance of Ag NSs substrate was highly reproducible. Consequently, we believe this citrate-directed galvanic replacement could regulate the morphology and produce clean and highly active SERS substrates, which would be potentially useful for its practical application.

Notes

Acknowledgments

The work was supported by the National Natural Science Foundation of China (Grant No. 61805033 and 21501021) and the Open Fund of State Key Laboratory of Molecular Reaction Dynamics, DICP, CAS (SKLMRD-K201812).

Supplementary material

339_2019_2786_MOESM1_ESM.docx (6.9 mb)
Supplementary material 1 (DOCX 7035 kb)

References

  1. 1.
    Q. Ding, L. Hang, L. Ma, RSC Adv. 8, 1753–1757 (2018)CrossRefGoogle Scholar
  2. 2.
    J. Fang, S. Du, S. Lebedkin, Z. Li, R. Kruk, M. Kappes, H. Hahn, Nano Lett. 10, 5006–5013 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    N. Gandra, C. Portz, S. Singamaneni, Adv. Mater. 26, 424–429 (2014)CrossRefGoogle Scholar
  4. 4.
    J. Yan, X. Han, J. He, L. Kang, B. Zhang, Y. Du, H. Zhao, C. Dong, H.-L. Wang, P. Xu, A.C.S. Appl, Mater. Interfaces 4, 2752–2756 (2012)CrossRefGoogle Scholar
  5. 5.
    M. Yang, K.D. Gilroy, Y. Xia, Part. Part. Syst. Char. 34, 1600279 (2017)CrossRefGoogle Scholar
  6. 6.
    K. Liu, S. Tadepalli, L. Tian, S. Singamaneni, Chem. Mater. 27, 5261–5270 (2015)CrossRefGoogle Scholar
  7. 7.
    J. Wu, Z. Zhang, B. Liu, Y. Fang, L. Wang, B. Dong, Solar RRL 2, 1800039 (2018)CrossRefGoogle Scholar
  8. 8.
    X. Li, H.K. Lee, I.Y. Phang, C.K. Lee, X.Y. Ling, Anal. Chem. 86, 10437–10444 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Li, P. Xu, Z. Ren, B. Zhang, Y. Du, X. Han, N.H. Mack, H.-L. Wang, A.C.S. Appl, Mater. Interfaces 5, 49–54 (2013)CrossRefGoogle Scholar
  10. 10.
    M. Wang, G. Shi, Y. Zhu, Y. Wang, W. Ma, Nanomaterials 8, 289 (2018)CrossRefGoogle Scholar
  11. 11.
    J. He, X. Han, J. Yan, L. Kang, B. Zhang, Y. Du, C. Dong, H.-L. Wang, P. Xu, CrystEngComm 14, 4952 (2012)CrossRefGoogle Scholar
  12. 12.
    Y. Zheng, X. Zhong, Z. Li, Y. Xia, Part. Part. Syst. Char. 31, 266–273 (2014)CrossRefGoogle Scholar
  13. 13.
    A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, L.M. Liz-Marzán, J. Am. Chem. Soc. 139, 107–110 (2017)CrossRefGoogle Scholar
  14. 14.
    H. Zhang, F. Zhou, M. Liu, D. Liu, D. Men, W. Cai, G. Duan, Y. Li, Adv. Mater. Interfaces 2, 1500031 (2015)CrossRefGoogle Scholar
  15. 15.
    G. Shi, M. Wang, Y. Zhu, Y. Wang, H. Xu, Appl. Surf. Sci. 459, 802–811 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    J. Wang, G. Duan, G. Liu, Y. Li, L. Xu, W. Cai, J. Mater. Chem. C 3, 5709–5714 (2015)CrossRefGoogle Scholar
  17. 17.
    J. Lee, Q. Zhang, S. Park, A. Choe, Z. Fan, H. Ko, H. Ko, A.C.S. Appl, Mater. Interfaces 8, 634–642 (2015)CrossRefGoogle Scholar
  18. 18.
    S. Yang, P.J. Hricko, P.-H. Huang, S. Li, Y. Zhao, Y. Xie, F. Guo, L. Wang, T.J. Huang, J. Mater. Chem. C 2, 542–547 (2014)CrossRefGoogle Scholar
  19. 19.
    B.L. Au, X. Lu, Y. Xia, Adv. Mater. 20, 2517–2522 (2008)CrossRefGoogle Scholar
  20. 20.
    S. Mabbott, A. Eckmann, C. Casiraghi, R. Goodacre, Analyst 138, 118–122 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    L. Polavarapu, D. Zanaga, T. Altantzis, S. Rodal-Cedeira, I. Pastoriza-Santos, J. Perez-Juste, S. Bals, L.M. Liz-Marzan, J. Am. Chem. Soc. 138, 11453–11456 (2016)CrossRefGoogle Scholar
  22. 22.
    Y. Yang, J. Liu, Z.-W. Fu, D. Qin, J. Am. Chem. Soc. 136, 8153–8156 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Nahla, J.M. Abu Hatab, M.J. Oran, ACS Nano 2, 377–385 (2008)CrossRefGoogle Scholar
  24. 24.
    S.M. Wells, S.D. Retterer, J.M. Oran, M.J. Sepaniak, ACS Nano 3, 3845–3853 (2009)CrossRefGoogle Scholar
  25. 25.
    H. Mao, W. Wu, D. She, G. Sun, P. Lv, J. Xu, Small 10, 127–134 (2014)CrossRefGoogle Scholar
  26. 26.
    G. Yang, J. Nanda, B. Wang, G. Chen, J. Daniel, T. Hallinan, ACS Appl. Mater. Interfaces 9, 13457–13470 (2017)CrossRefGoogle Scholar
  27. 27.
    X. Lin, W.-L.-J. Hasi, S.-Q.-G.-W. Han, X.-T. Lou, D.-Y. Lin, Z.-W. Lu, Phys. Chem. Chem. Phys. 17, 31324–31331 (2015)CrossRefGoogle Scholar
  28. 28.
    A. Garcia-Leis, A. Torreggiani, J.V. Garcia-Ramos, S. Sanchez-Cortes, Nanoscale 7, 13629–13637 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    A. Jaiswal, L. Tian, S. Tadepalli, K.-K. Liu, M. Fei, M.E. Farrell, P.M. Pellegrino, S. Singamaneni, Small 10, 4287–4292 (2014)Google Scholar
  30. 30.
    L. Tian, N. Gandra, S. Singamaneni, ACS Nano 7, 4252–4260 (2013)CrossRefGoogle Scholar
  31. 31.
    S. Shin, J. Lee, S. Lee, H. Kim, J. Seo, D. Kim, J. Hong, S. Lee, T. Lee, Small 13, 1602865 (2017)CrossRefGoogle Scholar
  32. 32.
    J. Wu, J. Fang, M. Cheng, X. Gong, Appl. Phys. A 122, 844 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    P.X. Chen, S.B. Shang, L.T. Hu, X.Y. Liu, H.W. Qiu, C.H. Li, Y.Y. Huo, S.Z. Jiang, C. Yang, Chem. Phys. Lett. 660, 169–175 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    L. Hu, Y.J. Liu, Y. Han, P. Chen, C. Zhang, C. Li, Z. Lu, D. Luo, S. Jiang, J. Mater. Chem. C 5, 3908–3915 (2017)CrossRefGoogle Scholar
  35. 35.
    T.-L. Guo, J.-G. Li, X. Sun, Y. Sakka, Mater. Sci. Eng., C 61, 97–104 (2016)CrossRefGoogle Scholar
  36. 36.
    J. Wu, J. Fang, M. Cheng, X. Gong, Appl. Phys. A 122, 1065 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    B. Zhang, P. Xu, X. Xie, H. Wei, Z. Li, N.H. Mack, X. Han, H. Xu, H.-L. Wang, J. Mater. Chem. C 21, 2495–2501 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    S. Zhou, D. Huo, S. Goines, Z. Tung-Han Yang, M. Lyu, K.D. Zhao, Y. Gilroy, Z.D. Wu, M. Hood, Y. Xie, J. Am. Chem. Soc. 140, 11898–11901 (2018)CrossRefGoogle Scholar
  39. 39.
    L. Tian, M. Su, F. Yu, Y. Xu, X. Li, L. Li, H. Liu, W. Tan, Nat. Commun. 9, 3642 (2018)ADSCrossRefGoogle Scholar
  40. 40.
    R. Fu, G. Liu, C. Jia, X. Li, X. Tang, G. Duan, Y. Li, W. Cai, Chem. Commun. 51, 6609–6612 (2015)CrossRefGoogle Scholar
  41. 41.
    S. Mabbott, Y. Xu, R. Goodacre, Anal. Methods 9, 4783–4789 (2017)CrossRefGoogle Scholar
  42. 42.
    M. Hajfathalian, K.D. Gilroy, R.A. Hughes, S. Neretina, Small 12, 3444–3452 (2016)CrossRefGoogle Scholar
  43. 43.
    L. Kang, P. Xu, D. Chen, B. Zhang, Y. Du, X. Han, Q. Li, H.-L. Wang, J. Phys. Chem. C 117, 10007–10012 (2013)CrossRefGoogle Scholar
  44. 44.
    Y. Wang, M. Wang, L. Shen, X. Sun, G. Shi, W. Ma, X. Yan, Appl. Surf. Sci. 436, 391–397 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    S. Lin, X. Lin, Y. Liu, H. Zhao, W. Hasi, L. Wang, Anal. Methods 10, 4201–4208 (2018)CrossRefGoogle Scholar
  46. 46.
    F. Diao, X. Xiao, B. Luo, H. Sun, F. Ding, L. Ci, P. Si, Appl. Surf. Sci. 427, 1271–1279 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PhysicsDalian University of TechnologyDalianPeople’s Republic of China
  2. 2.School of Physics and Materials EngineeringDalian Minzu UniversityDalianPeople’s Republic of China

Personalised recommendations