Applied Physics A

, 125:489 | Cite as

Synthesis and evaluation of the structural, optical, and antibacterial properties of copper oxide nanoparticles

  • Suresh SagadevanEmail author
  • S. Vennila
  • A. R. Marlinda
  • Yarub Al-Douri
  • Mohd. Rafie Johan
  • J. Anita Lett


The nanostructured material, due to their outstanding applications in various fields of science and technology; metal and metal oxide nano are exclusively explored in the progress of nanosized materials. The transition metal oxides including CuO is are used for magnetic storage devices, solar energy applications, sensors, as a catalyst in reactions, as electrode materials in supercapacitors and to tune the semiconducting properties of materials. The current work focuses on the synthesis of CuO nanoparticles (NPs) by combustion technique for various annealing (100°C and 300°C) using ascorbic acid as a capping agent. The XRD pattern confirms that the CuO NPs exhibit the monoclinic structure. The optical properties are investigated using UV–Vis absorption spectra. Further, the refractive index, optical dielectric constant and bulk modulus were investigated using the specific empirical model as a function of temperature. The FTIR spectrum shows that the band in the range 450–500 cm−1 confirms the formation of CuO NPs. The SEM images revealed that the spherical surface morphology of the CuO NPs. The Elemental analysis and the particle size were confirmed by elemental dispersive X-ray analysis (EDX) and particle size analyzer. Moreover, the antibacterial activity of CuO nanoparticles was investigated using E. coli, S. typhi, M. luteus, P. fluorescent, S. flexneri, and V. cholera bacteria.



The authors would like to acknowledge the financial support provided by Research University Grant Number (RU001-2018)NANOCAT, University of Malaya, Malaysia. One of the authors (Suresh Sagadevan) acknowledges the honor, namely the “Senior Research Fellow” at Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya 50603 Kuala Lumpur, Malaysia. The author wishes to place on record his heartfelt thanks that are due to the authorities concerned.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Y. Yecheskel, I. Dror, B. Berkowitz, Catalytic degradation of brominated flame retardants by copper oxide nanoparticles. Chemosphere 93, 172–177 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    Q. Zhang, K. Zhang, D. Xu et al., CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater Sci. 60, 208–237 (2014)CrossRefGoogle Scholar
  3. 3.
    P. Raksa, A. Gardchareon, T. Chairuangsri, P. Mangkorntong, N. Mangkorntong, S. Choopun, Ethanol sensing properties of CuO nanowires prepared by an oxidation reaction. Ceram. Int. 35, 649–652 (2009)CrossRefGoogle Scholar
  4. 4.
    A. Aslani, V. Oroojpour, CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route. Phys. B 406, 144–149 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    M. Yang, J. He, X. Hu, C. Yan, Z. Cheng, CuO nanostructures as quartz crystal microbalance sensing layers for detection of trace hydrogen cyanide gas. Environ. Sci. Technol. 45, 6088–6094 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Li, J. Liang, Z. Tao, J. Chen, CuO particles and plates: synthesis and gas-sensor application. Mater. Res. Bull. 43, 2380–2385 (2008)CrossRefGoogle Scholar
  7. 7.
    X. Wang, X. Xu, Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Transf. 13, 474–480 (1999)CrossRefGoogle Scholar
  8. 8.
    J. Singh, G. Kaur, M. Rawat, A brief review on synthesis and characterization of copper oxide nanoparticles and its applications. J. Bioelectron. Nanotechnol. 1(1), 9 (2016)Google Scholar
  9. 9.
    M. Sahooli, S. Sabbaghi, R. Saboori, Synthesis and characterization of mono sized CuO nanoparticles. Mater. Lett. 81, 169–172 (2012)CrossRefGoogle Scholar
  10. 10.
    K.S. Khashan, G.M. Sulaiman, F.A. Abdulameer, Synthesis and Antibacterial Activity of CuO Nanoparticles Suspension Induced by Laser Ablation in Liquid. Arab. J. Sci. Eng. 41, 301–310 (2016)CrossRefGoogle Scholar
  11. 11.
    Vinod Vellora Thekkae Padil, Miroslav Černík, Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomed. 8, 889–898 (2013)Google Scholar
  12. 12.
    P. Gong, H. Li, X. He et al., Preparation and antibacterial activity of Fe3O4@Ag nanoparticles”. Nanotechnology 18, 285604 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Haldorai, J.-J. Shim, Multifunctional chitosan-copper oxide hybrid material: photocatalytic and antibacterial activities. Int. J. Photoenergy 2013, 1–8 (2013)CrossRefGoogle Scholar
  14. 14.
    P.S. Kumar, M. Selvakumar, S.G. Babu, S.K. Jaganathan, S. Karuthapandian, S. Chattopadhyay, Novel CuO/chitosan nanocomposite thin film: facile hand-picking recoverable, efficient and reusable heterogeneous photocatalyst. RSC Adv. 5, 57493–57501 (2015)CrossRefGoogle Scholar
  15. 15.
    A.M. El Sayed, S. El-Gamal, W.M. Morsi, G. Mohammed, Effect of PVA and copper oxide nanoparticles on the structural, optical, and electrical properties of carboxymethyl cellulose films. J. Mater. Sci. 50(2015), 4717–4728 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    M. Safari, M. Taran, Optimized synthesis, characterization, and antibacterial activity of an alginate–cupric oxide bio- nanocomposite. J. Appl. Polym. Sci. 135, 45682 (2018)CrossRefGoogle Scholar
  17. 17.
    S. Roy, J.W. Rhim, Melanin-mediated synthesis of copper oxide nanoparticles and preparation of functional agar/CuO NP nanocomposite films. J. Nanomat. (2019). CrossRefGoogle Scholar
  18. 18.
    A. Paracchino, J.C. Brauer, J.-E. Moser, E. Thimsen, M. Graetzel, Synthesis and characterization of high-photoactivity electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy. J. Phys. Chem. C 116, 7341–7350 (2012)CrossRefGoogle Scholar
  19. 19.
    T.D. Golden, M.G. Shumsky, Y. Zhou, R.A. Vander Werf, R.A. Van Leeuwen, J.A. Switzer, Electrochemical deposition of copper(I) oxide films. Chem. Mater. 8, 2499–2504 (1996)CrossRefGoogle Scholar
  20. 20.
    J.F. Pierson, A. Tobor-Keck, A. Billard, Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering. Appl. Surf. Sci. 210, 359–367 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    T. Maruyama, Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate. Sol. Energy Mater. Sol. Cells 56, 85–92 (1998)CrossRefGoogle Scholar
  22. 22.
    S. Sagadevan, K. Pal, Z.Z. Chowdhury, Fabrication of CuO nanoparticles for structural, optical and dielectric analysis using chemical precipitation method. J. Mater. Sci. Mater.Electron. 28(17), 12591–12597 (2017)CrossRefGoogle Scholar
  23. 23.
    S. Sagadevan, M. Priya, Electrical properties of copper oxide nanoparticles. J. Nano Res. 30, 1–8 (2015)CrossRefGoogle Scholar
  24. 24.
    K. Nakaoka, J. Ueyama, K. Ogura, Photoelectrochemical behavior of electrodeposited CuO and Cu2O thin films on conducting substrates. J. Electrochem. Soc. 151, C661–C665 (2004)CrossRefGoogle Scholar
  25. 25.
    A.Y. Oral, E. Menşur, M.H. Aslan, E. Başaran, The preparation of copper (II) oxide thin films and the study of their microstructures and optical properties. Mater. chem. Phys. 83(1), 140–144 (2004)CrossRefGoogle Scholar
  26. 26.
    M. Izaki, M. Nagai, K. Maeda, F.B. Mohamad, K. Motomura, J. Sasano, T. Shinagawa, S. Watase, Electrodeposition of 1.4-eV-bandgap p-copper (II) oxide film with excellent photoactivity. J. Electrochem. Soc. 158(9), D578–D584 (2011)CrossRefGoogle Scholar
  27. 27.
    W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961)ADSCrossRefGoogle Scholar
  28. 28.
    D. Gupta, S.R. Meher, N. Illyaskutty, Z.C. Alex, Facile synthesis of Cu2O and CuO nanoparticles and study of their structural, optical and electronic properties. J. Alloy. Compd. 743, 737–745 (2018)CrossRefGoogle Scholar
  29. 29.
    N.M. Balzaretti, J.A.H. da Jornad, Pressure dependence of the refractive index of diamond, cubic silicon carbide and cubic boron nitride. Solid State Commun. 99, 943–948 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    N.M. Ravindra, S. Auluck, V.K. Srivastava, On the Penn gap in semiconductors. Phys. Status Solidi. (b) 93, k155–K160 (1979)ADSCrossRefGoogle Scholar
  31. 31.
    P.J.L. Herve, L.K.J. Vandamme, Empirical temperature dependence of the refractive index of semiconductors. J. Appl. Phys. 77, 5476–5477 (1995)ADSCrossRefGoogle Scholar
  32. 32.
    D.K. Ghosh, L.K. Samanta, G.C. Bhar, A simple model for evaluation of refractive indices of some binary and ternary mixed crystals. Infrared Phys. 24, 43–47 (1984)ADSCrossRefGoogle Scholar
  33. 33.
    D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2100 (1962)ADSCrossRefGoogle Scholar
  34. 34.
    J.A. Van Vechten, Quantum dielectric theory of electronegativity in covalent systems I. Electronic dielectric constant. Phys. Rev. 182, 891–905 (1969)ADSCrossRefGoogle Scholar
  35. 35.
    G.A. Samara, Temperature and pressure dependences of the dielectric constants of semiconductors. Phys. Rev. B 27, 3494–3505 (1983)ADSCrossRefGoogle Scholar
  36. 36.
    J.C. Phillips, Bonds, and bands in semiconductors (Academic Press, San Diego, 1973)Google Scholar
  37. 37.
    Y. Al-Douri, H. Abid, H. Aourag, Empirical formula relating the bulk modulus to the lattice constant in tetrahedral semiconductors. Mater. Chem. Phys. 87, 14–17 (2004)CrossRefGoogle Scholar
  38. 38.
    A. Barakat, M. Al-Noaimi, M. Suleiman, A.S. Aldwayyan, B. Hammouti, T.B. Hadda, S.F. Haddad, A. Boshaala, I. Warad, Effect of calcination temperature on Cu doped NiO nanoparticles prepared via wet-chemical method: structural, optical and morphological studies. Int. J. Mol. Sci. 14, 23941–23954 (2013)CrossRefGoogle Scholar
  39. 39.
    S. Sagadevan, J. Podder, Investigations on structural, optical, morphological and electrical properties of nickel oxide nanoparticles. Int. J. Nanoparticles 8, 289–301 (2015)CrossRefGoogle Scholar
  40. 40.
    Y. Liu, Y. Chu, M. Li, L. Lia, L. Dong, In situ synthesis and assembly of copper oxide nanocrystals on copper foil via a mild hydrothermal process. J. Mater. Chem. 16, 192–198 (2006)CrossRefGoogle Scholar
  41. 41.
    A. Kalam, A.G. Al-Sehemi, A.S. Al-Shihri, G. Du, T. Ahmad, Synthesis and characterization of NiO nanoparticles by thermal decomposition of nickel linoleate and their optical properties. Mater. Charact. 1(68), 77–81 (2012)CrossRefGoogle Scholar
  42. 42.
    R. Goyal, L.K. Macri, H.M. Kaplan, J. Kohn, Nanoparticles and nanofibers for topical drug delivery. J. Control. Release 240(2016), 77–92 (2016)CrossRefGoogle Scholar
  43. 43.
    I.M. El-Nahhal, S.M. Zourab, F.S. Kodeh, M. Selmane, I. Genois, F. Babonneau, Nanostructured copper oxide-cotton fibers: synthesis, characterization, and applications. Int. Nano Lett. 2, 1–5 (2012)CrossRefGoogle Scholar
  44. 44.
    M. Grigore, E. Biscu, A. Holban, M. Gestal, A. Grumezescu, Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals 9(4), 75 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Suresh Sagadevan
    • 1
    Email author
  • S. Vennila
    • 2
  • A. R. Marlinda
    • 1
  • Yarub Al-Douri
    • 1
  • Mohd. Rafie Johan
    • 1
  • J. Anita Lett
    • 3
  1. 1.Nanotechnology and Catalysis Research CentreUniversity of MalayaKuala LumpurMalaysia
  2. 2.PG Research Department of PhysicsJayaraj Annapackiyam College For Women (Autonomous)PeriyakulamIndia
  3. 3.Department of PhysicsSathyabama Institute of Science and TechnologyChennaiIndia

Personalised recommendations