Advertisement

Applied Physics A

, 125:502 | Cite as

Microstructure and magnetic properties of nanocrystalline cobalt–zirconium boride alloy prepared by melt spinning and subsequent annealing

  • E. Motalebi
  • M. TavoosiEmail author
  • A. Ghasemi
  • G. R. Gordani
  • S. Torkian
  • M. R. Loghman-EstarkiEmail author
Article

Abstract

The structural, thermal and magnetic characteristics of cobalt–zirconium boride (Co80Zr18B2) alloy were investigated in this work. In this regards, cobalt–zirconium boride samples with different structures and crystallite sizes were prepared using a copper boat vacuum induction melting plus melt-spinning and subsequent annealing processes. Prepared samples were characterized using X-ray diffraction, field emission scanning electron microscopy, differential scanning calorimetry and vibrating sample magnetometer. According to X-ray diffraction results, cobalt–-zirconium (Zr2Co11) single phase can successfully form by means of a melt-spinning process at a wheel speed of 40 m s−1. The saturation magnetization and coercivity of this sample are 58 emu/g and 3 kOe, respectively, which exhibit a hard magnetic property. Cobalt–zirconium compound which formed during melt-spinning process was not stable and transformed to Co23Zr6 during annealing process up to 500 °C. The maximum value of coercivity (Hc = 3.4 kOe vs. 3 kOe for single Zr2Co11 phase) is related to cobalt–zirconium boride alloy after annealing at 500 °C for 1 h.

Notes

References

  1. 1.
    Y. Jin, L. Yue, D.J. Sellmyer, Thin Solid Films 636, 283–288 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    W.Y. Zhang, X.Z. Li, S. Valloppilly, R. Skomski, D.J. Sellmyer, Mater. Sci. Eng. B 186, 64–67 (2014)CrossRefGoogle Scholar
  3. 3.
    B. Balasubramanian, B. Das, R. Skomski, W.Y. Zhang, D.J. Sellmyer, Adv. Mater. 25(42), 6090–6093 (2013)CrossRefGoogle Scholar
  4. 4.
    M. Palit, J.A. Chelvane, H. Basumatary, D.A. Babu, S.V. Kamat, J. Alloy. Compd. 644, 7–12 (2015)CrossRefGoogle Scholar
  5. 5.
    W. Zhang, S.R. Valloppilly, X. Li, R. Skomski, J.E. Shield, D.J. Sellmyer, IEEE Trans. Magn. 48(11), 3603–3605 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    W.Y. Zhang, X.Z. Li, S. Valloppilly, R. Skomski, J.E. Shield, D.J. Sellmyer, J. Phys. D Appl. Phys. 46(13), 135004 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    T. Saito, M. Itakura, J. Alloy. Compd. 572, 124–128 (2013)CrossRefGoogle Scholar
  8. 8.
    L.Y. Chen, H.W. Chang, C.H. Chiu, C.W. Chang, W.C. Chang, J. Appl. Phys. 97(10), 10F307 (2005)CrossRefGoogle Scholar
  9. 9.
    B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison & Wesley Publishing Company, London, 1956)Google Scholar
  10. 10.
    A.M. Gabay, Y. Zhang, G.C. Hadjipanayis, J. Magn. Magn. Mater. 236, 37–41 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    G.D. Yüzüak, E. Yüzüak, N. Teichert, A. Hütten, Y. Elerman, Metall. Mater. Trans. A 48(5), 2654–2659 (2017)CrossRefGoogle Scholar
  12. 12.
    W.Y. Zhang, X.Z. Li, S. Valloppilly, R. Skomski, D.J. Sellmyer, Mater. Sci. Eng. B 186, 64–67 (2014)CrossRefGoogle Scholar
  13. 13.
    M.H. Loghmani, A.F. Shojaei, Energy 68, 152–159 (2014)CrossRefGoogle Scholar
  14. 14.
    B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley-IEEE Press, New York, 2009)Google Scholar
  15. 15.
    A. Ghasemi, E. Motalebi, M. Tavoosi, J. Supercond. Novel Magn. 31(9), 2941–2948 (2018)CrossRefGoogle Scholar
  16. 16.
    H.W. Chang, C.F. Tsai, C.C. Hsieh, C.W. Shih, W.C. Chang, C.C. Shaw, J. Magn. Magn. Mater. 346, 74–77 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Z. Hou, L. Haoming, W. Wang, J. Alloy. Compd. 593, 1–6 (2014)CrossRefGoogle Scholar
  18. 18.
    A.M. Gabay, Y. Zhang, Hadjipanayis GC 236(1–2), 37–41 (2001)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringMalek Ashtar University of TechnologyShahin ShahrIran

Personalised recommendations