Advertisement

Applied Physics A

, 125:497 | Cite as

Er3+ induced point defects in ZnO and impact of Li+/Na+/K+ on the vacancy defects in ZnO:Er studied by positron annihilation spectroscopy

  • S. SellaiyanEmail author
  • A. Uedono
  • L. Vimala Devi
  • K. Sivaji
Article
  • 39 Downloads

Abstract

The defects species in as-prepared ZnO, Er-doped, and co-doped (with Li/Na/K) nanocrystallites synthesized by combustion method were examined by Positron Annihilation Lifetime (PAL) and Doppler Broadening (DB) spectroscopy. The S and W parameters were derived from positron trapping of valence and core electrons extracted from the central and wing regions of DB spectra to identify the vacancy-type defects. For as-prepared Er-doped ZnO samples, the observed high value of S indicated that the vacancies and vacancy cluster defects were located at the grain surface and two-grain junction. With co-doping of Li/Na/K, the S value was decreased due to the dopant occupying the vacancy clusters. On annealing, the major recovery of such defects was observed with enormous decreasing S for Li co-doped sample. Positron lifetime variations signified the presence of defects compared with bulk ZnO. Er doping in ZnO evidenced a small increase of defects with a gradual decrease when co-doped with Li/Na/K indicating the co-dopant impurity occupied the vacancies in the grain boundary. The first lifetime component of 193 ps owing to the Zn-type vacancies in as-prepared ZnO were increased on Er doping, evidencing the replacement of the Zn2+ by Er3+ ion and thereby created point defects due to charge compensation. On annealing to 800 °C, Li co-doped ZnO:Er resulted to enormous reduction of second lifetime τ2, mean lifetime τave, and S value signifying the Li ion localised in Zn vacancy site. Annealed ZnO:Er + Na/K resulted in considerable intensification in defect concentrations than ZnO:Er + Li due to the vacancy migration to form as clusters. The defect type, defect modification, the influence of Er together with co-doped Li/Na/K in ZnO, and their effect on annealing are elucidated in detail from the positron annihilation characteristics.

Notes

Acknowledgements

The financial support by University of Tsukuba, Japan is gratefully acknowledged.

References

  1. 1.
    W. Jinxiao, Y. Jun, H. Ning, Y. Jianfeng, Rare Metal Mater. Eng. 47(6), 1682–1688 (2018)Google Scholar
  2. 2.
    E.-B. Kim, S. Ameen, M.S. Akhtar, H.S. Shin, Sens. Actuators B 275, 422–431 (2018)Google Scholar
  3. 3.
    S.M. Yakout, Solid State Sci. 83, 207–217 (2018)ADSGoogle Scholar
  4. 4.
    C. Coskun, D.C. Look, G.C. Farlow, J.R. Sizelove, Semicond. Sci. Technol. 19(6), 752 (2004)ADSGoogle Scholar
  5. 5.
    S.O. Kucheyev, J.S. Williams, C. Jagadish, Vacuum 73(1), 93–104 (2004)ADSGoogle Scholar
  6. 6.
    D. Skoda, P. Urbanek, J. Sevcik, L. Munster, V. Nadazdy, D.A. Cullen, P. Bazant, J. Antos, I. Kuritka, Org. Electron. 59, 337–348 (2018)Google Scholar
  7. 7.
    B. Santoshkumar, S. Kalyanaraman, R. Vettumperumal, R. Thangavel, I.V. Kityk, S. Velumani, J. Alloys Compd. 658, 435–439 (2016)Google Scholar
  8. 8.
    T. Elkar, N. Mzabi, P. Gemeiner, B. Dkhil, S. Guermazi, H. Guermazi, Superlattices Microstruct. 122, 349–361 (2018)ADSGoogle Scholar
  9. 9.
    Y. Soo, S.W. Huang, Z.H. Ming, Y.H. Kao, G.C. Smith, E. Goldburt, R. Hodel, B. Kulkarni, J.V.D. Veliadis, R.N. Bhargava, J. Appl. Phys. 83(10), 5404–5409 (1998)ADSGoogle Scholar
  10. 10.
    E.T. Goldburt, B. Kulkarni, R.N. Bhargava, J. Taylor, M. Libera, J. Lumin. 72, 190–192 (1997)Google Scholar
  11. 11.
    L. O’Neal, D. Anthony, C. Bonner, D. Geddis, Proc. SPIE 9744, Optical Components and Materials XIII, 97441G (2016)Google Scholar
  12. 12.
    S. Bachir, K. Azuma, J. Kossanyi, P. Valat, J.C. Ronfard-Haret, J. Lumin. 75(1), 35–49 (1997)Google Scholar
  13. 13.
    Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, Y. Takeda, Appl. Phys. Lett. 87(9), 091109 (2005)ADSGoogle Scholar
  14. 14.
    J.C. Ronfard-Haret, P. Valat, V. Wintgens, J. Kossanyi, J. Lumin. 91(1–2), 71–77 (2000)Google Scholar
  15. 15.
    K. Li, F. Lu, R. Fan, C. Ma, B. Xu, J. Lumin. 200, 9–13 (2018)Google Scholar
  16. 16.
    R.K. Kalaiezhily, G. Saravanan, V. Asvini, N. Vijayan, K. Ravichandran, Ceram. Int. 44(16), 19560–19569 (2018)Google Scholar
  17. 17.
    V. Kumar, A. Pandey, S.K. Swami, O.M. Ntwaeaborwa, H.C. Swart, V. Dutta, J. Alloys Compd. 766, 429–435 (2018)Google Scholar
  18. 18.
    Y. Bai, K. Yang, Y. Wang, X. Zhang, Y. Song, Opt. Commun. 281(10), 2930–2932 (2008)ADSGoogle Scholar
  19. 19.
    R.J. Tilley, Defects in Solids, vol. 4 (Wiley, Hoboken, 2008)Google Scholar
  20. 20.
    E. Scorza, U. Birkenheuer, C. Pisani, J. Chem. Phys. 107(22), 9645–9658 (1997)ADSGoogle Scholar
  21. 21.
    K. Vanheusden, C. Seager, W.T. Warren, D. Tallant, J. Voigt, Appl. Phys. Lett. 68(3), 403–405 (1996)ADSGoogle Scholar
  22. 22.
    T. Tatsumi, M. Fujita, N. Kawamoto, M. Sasajima, Y. Horikoshi, Jpn. J. Appl. Phys. 43(5R), 2602 (2004)ADSGoogle Scholar
  23. 23.
    F. Pavón, A. Urbieta, P. Fernández, J. Lumin. 195, 396–401 (2018)Google Scholar
  24. 24.
    Y.W. Heo, D.P. Norton, S.J. Pearton, J. Appl. Phys. 98, 073502 (2005)ADSGoogle Scholar
  25. 25.
    H. Han, L. Yang, Y. Liu, Y. Zhang, Q. Yang, Opt. Mater. 31(2), 338–341 (2008)ADSGoogle Scholar
  26. 26.
    Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, Q. Zeng, Y. Zhang, H. Zhang, J. Lumin. 128(1), 15–21 (2008)Google Scholar
  27. 27.
    X. Wang, X. Kong, G. Shan, Y. Yu, Y. Sun, L. Feng, K. Chao, S. Lu, Y. Li, J. Phys. Chem. B 108(48), 18408–18413 (2004)Google Scholar
  28. 28.
    T. Andelman, Y. Gong, M. Polking, M. Yin, I. Kuskovsky, G. Neumark, S. O’Brien, J. Phys. Chem. B 109(30), 14314–14318 (2005)Google Scholar
  29. 29.
    S. Yamauchi, Y. Goto, T. Hariu, J. Cryst. Growth 260(1), 1–6 (2004)ADSGoogle Scholar
  30. 30.
    Q. Zhao, P. Klason, M. Willander, H. Zhong, W. Lu, J. Yang, Appl. Phys. Lett. 87(21), 211912 (2005)ADSGoogle Scholar
  31. 31.
    P. Klason, T.M. Børseth, Q.X. Zhao, B.G. Svensson, A.Y. Kuznetsov, P.J. Bergman, M. Willander, Solid State Commun. 145(5–6), 321–326 (2008)ADSGoogle Scholar
  32. 32.
    J. Cui, M. Thomas, J. Appl. Phys. 106(3), 033518 (2009)ADSGoogle Scholar
  33. 33.
    A. Bera, D. Basak, Chem. Phys. Lett. 476(4–6), 262–266 (2009)ADSGoogle Scholar
  34. 34.
    J. Sivasankari, S. Sankar, L. Vimala Devi, J. Mater. Sci. Mater. Electron. 26(10), 8089–8096 (2014)Google Scholar
  35. 35.
    J. Sivasankari, S. Sankar, S. Selvakumar, L. Vimaladevi, R. Krithiga, Mater. Chem. Phys. 143(3), 1528–1535 (2014)Google Scholar
  36. 36.
    T.-H. Lee, H.H. Nersisyan, S.-C. Kwon, S.-H. Joo, K.-T. Park, J.-H. Lee, Int. J. Miner. Process. 153, 87–94 (2016)Google Scholar
  37. 37.
    S. Nezhadesm-Kohardafchahi, S. Farjami-Shayesteh, Y. Badali, Å. Altındal, M.A. Jamshidi-Ghozlu, Y. Azizian-Kalandaragh, Mater. Sci. Semicond. Process. 86, 173–180 (2018)Google Scholar
  38. 38.
    J.-H. Ryu, P. Kongsy, D.-Y. Lim, S.-B. Cho, J.-H. Song, Ceram. Int. 42(15), 17565–17570 (2016)Google Scholar
  39. 39.
    M.M. Eldrup, P. Sanders, J. Weertman, Materials Science Forum (Trans Tech Publications, Zurich, 1997), pp. 436–438Google Scholar
  40. 40.
    H. Saito, T. Hyodo, Radiat. Phys. Chem. 68(3), 431–434 (2003)ADSGoogle Scholar
  41. 41.
    B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice Hall, Upper Saddle River, 2001)Google Scholar
  42. 42.
    M. Miritello, R. Lo Savio, A.M. Piro, G. Franzo, F. Priolo, F. Iacona, C. Bongiorno, J. Appl. Phys. 100(1), 013502 (2006)ADSGoogle Scholar
  43. 43.
    H. Li, Z. Zhang, J. Huang, R. Liu, Q. Wang, J. Alloys Compd. 550, 526–530 (2013)Google Scholar
  44. 44.
    S. Ghosh, G.G. Khan, A. Ghosh, S. Varma, K. Mandal, CrystEngComm 15(38), 7748–7755 (2013)Google Scholar
  45. 45.
    L. Xu, F. Gu, J. Su, Y. Chen, X. Li, X. Wang, J. Alloys Compd. 509(6), 2942–2947 (2011)Google Scholar
  46. 46.
    R. Krithiga, S. Sankar, G. Subhashree, Superlattices Microstruct. 75, 621–633 (2014)ADSGoogle Scholar
  47. 47.
    R. Yogamalar, P.S. Venkateswaran, M.R. Benzigar, K. Ariga, A. Vinu, A.C. Bose, J. Nanosci. Nanotechnol. 12(1), 75–83 (2012)Google Scholar
  48. 48.
    R. Krause-Rehberg, H.S. Leipner, T. Abgarjan, A. Polity, Appl. Phys. A Mater. Sci. Process. 66(6), 599–614 (1998)ADSGoogle Scholar
  49. 49.
    T. Suzuki, S. Iida, T. Yamashita, Y. Nagashima, J. Phys. Conf. Ser. 618(1), 012015 (2015)Google Scholar
  50. 50.
    A. Uedono, T. Koida, A. Tsukazaki, M. Kawasaki, Z.Q. Chen, S.F. Chichibu, H. Koinuma, J. Appl. Phys. 93(5), 2481–2485 (2003)ADSGoogle Scholar
  51. 51.
    T. Koida, S.F. Chichibu, A. Uedono, A. Tsukazaki, M. Kawasaki, T. Sota, Y. Segawa, H. Koinuma, Appl. Phys. Lett. 82(4), 532–534 (2003)ADSGoogle Scholar
  52. 52.
    A. Zubiaga, F. Tuomisto, F. Plazaola, K. Saarinen, J.A. Garcia, J.F. Rommeluere, J. Zuniga-Perez, V. Muñoz-Sanjosé, Appl. Phys. Lett. 86(4), 042103 (2005)ADSGoogle Scholar
  53. 53.
    K.H. Tam, C.K. Cheung, Y.H. Leung, A.B. Djurišić, C.C. Ling, C.D. Beling, S. Fung, W.M. Kwok, W.K. Chan, D.L. Phillips, J. Phys. Chem. B 110(42), 20865–20871 (2006)Google Scholar
  54. 54.
    R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors: Defect Studies (Springer Science & Business Media, Berlin, 1999)Google Scholar
  55. 55.
    M. Eldrup, Le Journal de Physique IV 5(C1), C1-93–C1-109 (1995)Google Scholar
  56. 56.
    F. Tuomisto, in Semiconductors and Semimetals, ed. B. G. Svensson, S. J. Pearton, C. Jagadish (Elsevier, Amsterdam, 2013), vol 88, pp. 39–65Google Scholar
  57. 57.
    F. Tuomisto, I. Makkonen, Rev. Mod. Phys. 85(4), 1583 (2013)ADSGoogle Scholar
  58. 58.
    T. Staab, R. Krause-Rehberg, B. Kieback, Mater. Sci. 34(16), 3833–3851 (1999)ADSGoogle Scholar
  59. 59.
    R. Pareja, R. De La Cruz, L. Díaz, J. Mater. Sci. 26(3), 593–596 (1991)ADSGoogle Scholar
  60. 60.
    M. Mizuno, H. Araki, Y. Shirai, Mater. Trans. 45(7), 1964–1967 (2004)Google Scholar
  61. 61.
    G. Brauer, W. Anwand, W. Skorupa, J. Kuriplach, O. Melikhova, C. Moisson, H. Von Wenckstern, H. Schmidt, M. Lorenz, M. Grundmann, Phys. Rev. B 74(4), 045208 (2006)ADSGoogle Scholar
  62. 62.
    G. Brauer, W. Anwand, D. Grambole, J. Grenzer, W. Skorupa, J. Čížek, J. Kuriplach, I. Procházka, C.C. Ling, C.K. So, Phys. Rev. B 79(11), 115212 (2009)ADSGoogle Scholar
  63. 63.
    S.K. Sharma, P.K. Pujari, K. Sudarshan, D. Dutta, M. Mahapatra, S.V. Godbole, O.D. Jayakumar, A.K. Tyagi, Solid State Commun. 149(13–14), 550–554 (2009)ADSGoogle Scholar
  64. 64.
    G. Brauer, W. Anwand, W. Skorupa, J. Kuriplach, O. Melikhova, J. Cizek, I. Prochazka, C. Moisson, H. von Wenckstern, H. Schmidt, Superlattices Microstruct. 42(1–6), 259–264 (2007)ADSGoogle Scholar
  65. 65.
    F. Tuomisto, V. Ranki, K. Saarinen, D.C. Look, Phys. Rev. Lett. 91(20), 205502 (2003)ADSGoogle Scholar
  66. 66.
    D.D. Wang, Z.Q. Chen, C.Y. Li, X.F. Li, C.Y. Cao, Z. Tang, Phys. B Condens. Matter 407(14), 2665–2669 (2012)ADSGoogle Scholar
  67. 67.
    H.S. Domingos, J.M. Carlsson, P.D. Bristowe, B. Hellsing, Interface Sci. 12(2–3), 227–234 (2004)Google Scholar
  68. 68.
    D. Wang, Z.Q. Chen, D.D. Wang, N. Qi, J. Gong, C.Y. Cao, Z. Tang, J. Appl. Phys. 107(2), 023524 (2010)ADSGoogle Scholar
  69. 69.
    Z. Chen, S. Yamamoto, M. Maekawa, A. Kawasuso, X. Yuan, T. Sekiguchi, J. Appl. Phys. 94(8), 4807–4812 (2003)ADSGoogle Scholar
  70. 70.
    A. Karbowski, K. Fedus, J. Patyk, Å.U. Bujak, K.S. Służewski, G. Karwasz, Nukleonika 58, 189–194 (2013)Google Scholar
  71. 71.
    K. Jayanthi, S. Chawla, A.G. Joshi, Z.H. Khan, R. Kotnala, J. Phys. Chem. C 114(43), 18429–18434 (2010)Google Scholar
  72. 72.
    N. Khichar, S. Bishnoi, S. Chawla, RSC Adv. 4(36), 18811–18817 (2014)Google Scholar
  73. 73.
    B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79(7), 943–945 (2001)ADSGoogle Scholar
  74. 74.
    P.K. Nayak, J. Yang, J. Kim, S. Chung, J. Jeong, C. Lee, Y. Hong, J. Phys. D Appl. Phys. 42(3), 035102 (2008)ADSGoogle Scholar
  75. 75.
    B. Cheng, X. Yu, H. Liu, M. Fang, L. Zhang, J. Appl. Phys. 105(1), 014311 (2009)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • S. Sellaiyan
    • 1
    Email author
  • A. Uedono
    • 1
  • L. Vimala Devi
    • 2
  • K. Sivaji
    • 3
  1. 1.Division of Applied PhysicsUniversity of TsukubaIbarakiJapan
  2. 2.Department of Physics, MIT CampusAnna UniversityChennaiIndia
  3. 3.Department of Nuclear Physics, Guindy CampusUniversity of MadrasChennaiIndia

Personalised recommendations