Applied Physics A

, 125:491 | Cite as

Monte Carlo study of the magnetic properties of the rare earth-based perovskite LaSr2Cr3O9

  • S. Mtougui
  • N. El Mekkaoui
  • S. Ziti
  • S. Idrissi
  • H. Labrim
  • I. El Housni
  • R. Khalladi
  • L. BahmadEmail author


A new theoretical study of the magnetic triple perovskite LaSr2Cr3O9 is presented in this work. The all possible configurations have been studied and discussed in the absence of any temperature (T = 0 K). For a finite temperature value, we use Monte Carlo simulations to underline the critical behavior of this system. The transition temperature is found to be around 100 K. The dependency of the total magnetizations is a function of the reduced crystal field and the reduced external magnetic field. In addition, the hysteresis loops have been carried out for different temperature values. Finally, the reduced remanent magnetizations have been presented as a function of temperature.



  1. 1.
    J. Navarro, L.I. Balcells, F. Sandiumenge, M. Bibes, A. Roig, B. Martínez, J. Fontcuberta, Antisite defects and magnetoresistance in Sr2FeMoO6 double perovskite. J. Phys. Condens. Matter 13, 8481 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    J.K. Murthy, K.D. Chandrasekhar, S. Mahana, D. Topwal, A. Venimadhav, Giant magnetocaloric effect in Gd2NiMnO6 and Gd2CoMnO6 ferromagnetic insulators. J. Phys. D Appl. Phys. 48, 355001 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    M.P. Singh, K.D. Truong, P. Fournier, P. Rauwel, E. Rauwel, L.P. Carignan, D. Ménard, A radical approach to promote multiferroic coupling in double perovskites. J. Magn. Magn. Mater. 321, 1743–1747 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    T. Dey, A.V. Mahajan, R. Kumar, B. Koteswararao, F.C. Chou, A.A. Omrani, H.M. Ronnow, Possible spin-orbit driven spin-liquid ground state in the double perovskite phase of Ba3YIr2O9. Phys. Rev. B 88, 134425 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    A.A. Bokov, Z.G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31–52 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    S. Mtougui et al., Magnetic properties of the perovskite BiFeO3: Monte Carlo simulation. Superlattices Microstruct. (2018). CrossRefGoogle Scholar
  7. 7.
    S. Mtougui et al., Study of the magnetic properties of the perovskite CeFeO3: Monte Carlo Simulations. Comput. Cond. Matter (2018). CrossRefGoogle Scholar
  8. 8.
    S. Mtougui et al., Magnetic properties of the rare earth cerium orthochromite perovskite CeCrO3. Comput. Cond. Mat (2018). CrossRefGoogle Scholar
  9. 9.
    J.F. Wang et al., Composition dependent magnetism in novel triple perovskite Sr3MFeMoO9 (M = Mn Co, Ni). Ceram. Int. 40, 8753–8759 (2014). CrossRefGoogle Scholar
  10. 10.
    M.W. Lufaso, H.C. ZurLoye, Crystal structures and magnetic properties of mixed iridium-ruthenium triple perovskites Ba3MRuIrO9 (M = lanthanide, Y). Inorg. Chem. 44, 9143 (2005)CrossRefGoogle Scholar
  11. 11.
    M.P. Singh, K.D. Truong, S. Jandl, P. Fournier, Stabilization and functional properties of La3NiAlMnO9 and La3CoAlMnO9 magnetoelectric triple perovskites. Appl. Phys. Lett. 94, 171908 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    A.J. Hatt, N.A. Spaldin, Trilayer superlattices: a route to magnetoelectric multiferroics? Appl. Phys. Lett. 90, 242916 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Z. Li, L. Jiao, W.J. Ji, J. Xu, J.F. Wang, Z.B. Gu, J. Zhou, S.H. Yao, Y.B. Chen, S.T. Zhang, Triple perovskite Sr3CrFeMoO9 ultrathin films with ferromagnetism above room temperature. Scr. Mater. 69, 590 (2013)CrossRefGoogle Scholar
  14. 14.
    L. Jiao, J. Xu, Z. Li et al., Room temperature ferromagnetism in triple perovskite Sr3CrFeMoO9. J. Mater. Sci. Mater. Electron. 24, 4970–4973 (2013). CrossRefGoogle Scholar
  15. 15.
    E.C. Hunter et al., Ferrimagnetism as a consequence of cation ordering in the perovskite LaSr2Cr2SbO9. J. Solid State Chem. (2017). CrossRefGoogle Scholar
  16. 16.
    P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, New York, 2005)CrossRefGoogle Scholar
  17. 17.
    S. Sidi Ahmed, M. Boujnah, L. Bahmad, A. Benyoussef, A. El Kenz, Magnetic and electronic properties of double perovskite Lu2MnCoO6: Ab-initio calculations and Monte Carlo simulation. Chem. Phys. Lett. 685, 191–197 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    S. Naji, A. Benyoussef, A. El Kenz, H. Ez-Zahraouy, M. Loulidi, Monte Carlo study of phase transitions and magnetic properties of LaMnO3 Heisenberg model. Phys. Stat. Mech. Appl. 391(15), 3885–3894 (2012)CrossRefGoogle Scholar
  19. 19.
    M. El Yadari, L. Bahmad, A. El Kenz, A. Benyoussef, Monte Carlo study of the double perovskite nano Sr2VMoO6. J. Alloy. Compd. 579, 86–91 (2013)CrossRefGoogle Scholar
  20. 20.
    L. Bahmad, R. Masrour, A. Benyoussef, Nanographene magnetic properties: a Monte Carlo study. J. Supercond. Nov. Magn. 25(6), 2015–2018 (2012). CrossRefGoogle Scholar
  21. 21.
    S. Idrissi, R. Khalladi, S. Mtougui, S. Ziti, H. Labrim, I. El Housni, N. El Mekkaoui, L. Bahmad, Magnetism and phase diagrams of the doubles perovskite Sr2CrIrO6: Monte Carlo simulations. Phys. A (2019). CrossRefGoogle Scholar
  22. 22.
    S. Idrissi, R. Khalladi, S. Ziti, N. El Mekkaoui, S. Mtougui, H. Labrim, I. El Housni, L. Bahmad, The electronic and magnetic proprieties of the rare earth-based quaternary Heusler compound LuCoVGe. Phys. B 562, 116–123 (2019). ADSCrossRefGoogle Scholar
  23. 23.
    S. Idrissi, H. Labrim, S. Ziti, J. Electron. Mater. (2019). CrossRefGoogle Scholar
  24. 24.
    S. Idrissi, L. Bahmad, S. Ziti et al., Appl. Phys. A 125, 306 (2019). ADSCrossRefGoogle Scholar
  25. 25.
    S. Idrissi, L. Bahmad, R. Khalladi, I. El Housni, N. El Mekkaoui, S. Mtougui, H. Labrim, S. Ziti, Phase diagrams, electronic and magnetic properties of the quaternary Heusler alloy NbRhCrAl. Chin. J. Phys. (2019). CrossRefGoogle Scholar
  26. 26.
    S. Idrissi, S. Ziti, H. Labrim, R. Khalladi, S. Mtougui, N. El Mekkaoui, I. El Housni, L. Bahmad, Magnetic properties of the Heusler compound CoFeMnSi: Monte Carlo simulations. Phys. A Stat. Mech. Appl. (2019). CrossRefGoogle Scholar
  27. 27.
    R. Khalladi, H. Labrim, S. Idrissi, S. Mtougui, I. El Housni, S. Ziti, N. El Mekkaoui, L. Bahmad, Magnetic properties study of the anti-perovskite Mn3CuN compound by Monte Carlo simulations. Solid State Commun. 290, 42–48 (2019). ADSCrossRefGoogle Scholar
  28. 28.
    Z. Jia, K. Lin, G. Wu, H. Xing, H. Wu, NANO 13(06), 1830005 (2018)CrossRefGoogle Scholar
  29. 29.
    Z.R. Jia, Z.G. Gao, D. Lan, Y.H. Cheng, G.L. Wu, H.J. Wu, Chin. Phys. B 27, 117806 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    H. Wu, S. Qu, K. Lina, Y. Qing, L. Wang, Y. Fan, Qu Fu, F. Zhang, Powder Technol. 333, 153–159 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, J. Mater. Chem. C 3, 7677–7690 (2015)CrossRefGoogle Scholar
  32. 32.
    H.J. Wu, G. Wu, L. Wang, Powder Technol. 269, 443–451 (2015)CrossRefGoogle Scholar
  33. 33.
    Di Lan, Ming Qin, Ruisheng Yang, Shuang Chen, Wu Hongjing, Yuancheng Fan, Fu Quanhong, Fuli Zhang, J. Colloid Interface Sci. 533, 481–491 (2019)ADSCrossRefGoogle Scholar
  34. 34.
    Zirui Jia, Di Lan, Kejun Lin, Ming Qin, Kaichang Kou, Wu Guanglei, Wu Hongjing, J. Mater. Sci.: Mater. Electron. 29, 17122–17136 (2018)Google Scholar
  35. 35.
    K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de la Matière Condensée et des Sciences Interdisciplinaires (LaMCScI)Mohammed V University of Rabat, Faculty of SciencesRabatMorocco
  2. 2.Intelligent Processing and Security SystemsMohammed V University of Rabat, Faculty of SciencesRabatMorocco
  3. 3.USM/DERS/Centre National de l’Energie, des Sciences et des Techniques Nucléaires (CNESTEN)RabatMorocco

Personalised recommendations